NLSF User’s Manual

and Programmer’s Guide

Modeling Evaluation and
Research of Lightwave
Networks 1.0

UNIX

'\”SF User’s Manual

and Programmer’s Guide

Modeling Evaluation and
Research of Lightwave

Networks

version

1.0

Authors
Frederic Mouveaux
Francois Lapeyrere
Nada Golmie

Programming
Francois Lapeyrere
Frederic Mouveaux

Guillaume Lhoste

National Institute of Standards and Technology
100 Bureau drive, Stop 8920
Gaithersburg, MD 20899-8920

World Wide Web
w3.antd.nist.gov

http://w3.antd.nist.gov

Copyright

Modeling Evaluation and Research of Lightwave Networks (MERLIN)
National Institute of Standards and Technology (NIST)

This software was developed at the National Institute of Standards and Technology
by employees of the Federal Government in the course of their official duties.
Pursuant to title 17 Section 105 of the United States Code this software is not
subject to copyright protection and is in the public domain. MERLIN is an
experimental system. NIST assumes no responsibility whatsoever for its use by
other parties, and makes no guarantees, expressed or implied, about its quality.
reliability, or any other characteristic.

We would appreciate acknowledgement if this software were used.

NIST ALLOWS FREE USE OF THIS SOFTWARE IN ITS “AS IS” CONDITION
AND DISCLAIM ANY LIABILITY OF ANY KIND FOR ANY DAMAGES
WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

No part of this publication may be changed or disclosed into third parties.

Trademarks

Java is a trademark of Sun Microsystems, Inc.

MS-DOS, and Windows 95/98 are trademarks of Microsoft, Inc.

All other brands or products names and logo are copyrights or trademarks of their
respective companies or organizations.

Contents

CHAPTER 1

CHAPTER 2

What Is MERLIN? 15

Management And Control Of WDM Networksl5

Overview 16
Core 20
Plug-ins 20
Algorithms 22

Future Extensions 22

Getting Started 23

MERLIN Installation 24

Directory Structure 25

Running A Simulation 26
Launching the daemon26
Using MERLIN plug-ins. 27
Plug-in Examples 27

Analyzing The Results 27

National Institute of Standards and Technology

Contents

CHAPTER 3

CHAPTER 4

Configuration File 31

File Structure 32
Topology 32
Action 32

Describing The Components32
Node 33
Link 35
Connection 37
Route 38
Wave 39

The Actions 40
Example File 43

Graphical User Interface 51

Getting started 51
Installation requirements 52
How to launch the Graphical User Interface®3
Shortcut Tool Bar 54
Thumbnails Overview 55
Getting/Setting information 55
Status Bar 57

Creating a configuration 58

Creating nodes 58

Creating Links 59

Creating Connection Request$9
Deleting Nodes 59

Deleting Links 60

Deleting Connection Request$0
Simulate the configuration in MERLINGO

Opening an existing configuration61

Topology information panel 62
Non Convert Node Thumbnail Paneb2
Convert Node Thumbnail Paneb3
Link Thumbnail Panel 64
Connection Thumbnail Panel66
Routes Thumbnail Panel67
Algorithms Thumbnail Panel 69

Vi

National Institute of Standards and Technology

Contents

Customizing The Document Display70
Scroll Bars 70
Zoom 70
Split Panels 70
List Management 70
Saving A Configuration File 71
Saving a topology 71
Export Performances 72
Troubleshooting 72
The interface hang when loading a configuration2
No algorithms are displayed or can be selecté@

MERLIN Server is not running 73
The interface displays a warning concerning the sockets 73
The interface does not display the results 73

CHAPTER 5

CHAPTER 6

CHAPTER 7

Architecture Overview 77

Core 78

Plug-in 78

Algorithm 79
Communication APl 79

Component Hierarchy 81

Introduction 81

Hierarchy 82
Component 82
Math 86
Merlin 86
Network 86
Parser 87
Tool 88

The MERLIN Grammar 89
What Is A Grammar? 90

National Institute of Standards and Technology

vii

Contents

Description of the MERLIN Grammar92
Token list 92
Rules list 94

CHAPTER 8 Extending MERLIN 103

The Plug-in 103
The Algorithm 105
Integration To MERLIN 106

CHAPTER 9 k shortest path 113

Abstract 113

Input parameters 113

Output parameters114

Pseudo code 114

Structures and temporary format4&15
Integration in MERLIN 115
References 115

CHAPTER 10 Tabu 117

Abstract 117

Input parameters 117

Output parameters118

Pseudo code 118

Structures and temporary format419
Integration in MERLIN 121
References 121

CHAPTER 11 First Fit Reconfiguration 123

Abstract 123
Input parameters 123

Viii National Institute of Standards and Technology

Contents

Output parameters124

Pseudo code 124

Structures and temporary formatd24
Integration in MERLIN 124

National Institute of Standards and Technology

Contents

National Institute of Standards and Technology

Introduction

Modeling Evaluation and Research of Lightwave Network (MERLIN) is a
Wavelength Division Multiplexing (WDM) network design and modeling
environment that allows the development and evaluation of algorithms for
wavelength assignment, routing, dynamic reconfiguration and restoration
mechanisms. MERLIN can be extended to implement network management
procedures and Quality of Service (QoS) models for WDM networks protocols.

About this Manual

This document intends to provides a detailed overview of MERLIN architecture
and its major building blocks. It is intended for the network planner who wants to
run a simulation of the protocol, the researcher who wants to know the basics about
the simulator and how to implement and run his/her own algorithm. It is also for the
application programmer who plans to integrate a new component like a plug-in.
However, the experienced programmer familiar with the concepts of MERLIN may
prefer to use the MERLIN Reference Manual, located imther directory of the
archive to search for a specific function, and will refer to this manual only when
trying out new features. This document is also available onlindttat//
grabber.ncsl.nist.gov/~merlin/www

In this manual, we assume that the reader is familiar with his/her operating system
and its conventions. Most of the sections describe how to use the simulator and
suppose that the software has already been installed. The reader is referred to th
Getting Starteathapter in order to install the simulator.

MERLIN user

The first part of this document describes how to use the tool. It contains the
following sections:

What is MERLIN ? contains the basic concepts about the MERLIN architecture,
the goal of the project and future extensions.

Getting Started describes the system requirements, the installation instructions

http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www

Introduction

The Configuration File gives the file format and a description of the components
in order for the user to build his/her own configuration file.

The Graphical User Interface gives an overview of the GUI.

MERLIN Programmer

The second part that is destined for experienced programmer consists of the
following chapters:

The Architecture Overview gives the full design of the simulator including the
core, the plug-in and the algorithm interface.

The Component Hierarchy presents all the objects and the relations between
them, as they are implemented in MERLIN.

The MERLIN Grammar explains the basic concepts about how to read a
grammar, and a full description of the MERLIN grammar.

Extending MERLIN explains the use of the template file in order to create new
plug-ins and algorithms to be integrated in MERLIN.

Conventions

In order to improve readability and to keep consistent we ???? the following
conventions and notations throughout this manual:

Control+n Holding down Control and pressing
the lowercase letter n.

italic characters in a para- Emphasis of the corresponding word

graph in the sentence.

centered italic characters Refer to a command that needs to be
entered at the shell prompt.

Arial Bold characters at Reference to a title of a paragraph in
the beginning the document.

Part 1: Users Manual

CHAPTER 1

What Is MERLIN?

Management And Control Of WDM Networks

Optical networking has experienced considerable progress in recent years. For
example, wavelength division multiplex (WDM) transport systems with tera-bit/sec
capacity on a single strain of fiber is commercially available now. However, a
number of technical challenges still remain to be addressed before optical networks
become the effective basis for a robust, agile, super-fast, and scalable next genera
tion information infrastructure.

One such challenge is the development of standardized architectures and protocol:
for network and optical layers, appropriate at very high speeds, and for different
environments (e.g., local access/metro and long haul). While experimentation on
DARPA sponsored testbed will reveal useful field information about these issues, a
simulation tool which can provide rapid and accurate analysis is now essential for
timely resolution of the challenges of the integration of networking and optical lay-
ers. Building such a network evaluation tool with a high degree of link and optical
layer detail (which is required at high speeds such as in excess of OC-48, for
DWDM, and for low BER) is now feasible using physical device/component mod-
eling and simulation tools that are under development or commercially available.

Second, a variety of optical networks (based on SONET, WDM, and perhaps TDM)
will coexist with legacy networks in the next generation infrastructure. Accord-

National Institute of Standards and Technology 15

What Is MERLIN?

ingly, NGI network engineering tools must incorporate existing and emerging opti-
cal networking technologies, which have many design features different from those
of conventional networks. For example, the distinction between virtual and physi-
cal topology designs is made in WDM networks. Network engineering issues also
include design at different time scales: from capacity provisioning to handle traffic
growth done on a scale of months, to split-second dynamic reconfiguration, with
attendant packet/connection management, as an efficient response to fast traffic
changes and mission critical applications. Additionally, multiple services with QoS
differentiation must be optimally mapped to light-paths, and parameters of protec-
tion/restoration functions at optical and electronic layers must be engineered to
avoid destructive interference. Furthermore, the accuracy of such tools is enhanced
by incorporating optical network management and control functions either via
models or by interfacing with actual management and control objects.

The High Speed Network Technologies group in the Advanced Networking Tech-
nologies proposes to develop an optical network modeling and planning tool
(MERLIN), which is:

1) capable of rapid evaluation of protocols and architectures, with respect to their
characteristics in different environments; and 2) also a network engineering tool
that can inter-work with higher layer models and device level simulators.

MERLIN has a rich library of algorithms for optimum network design, dynamic re-
configuration, restoration, path protection, wavelength assignment, and perfor-
mance analysis. It is designed to permit varying levels of abstraction of the optical
layer. Specifically, a higher layer network simulator can have models of links and
light paths parameterized with features determined/queried by a detailed optical
layer simulator; or the latter can be a pluggable module into the overall simulation
of all layers. The core of the MERLIN simulation tool provides the capability to
compose a physical topology, optimize virtual topology design for given traffic and
end-to-end requirements, and overlay Internet Packets through the optical network.
In addition to a rich library of topologies, algorithms, and protocols, the tool pro-
vides for the creation and evaluation of user-defined algorithms and protocols.

Overview

Modeling Evaluation and Research of Lightwave Network (MERLIN) is a Wave-
length Division Multiplexing (WDM) network design and modeling environment
that is currently under development at the National Institute of Standards and Tech-

16

National Institute of Standards and Technology

Overview

nology. The main purpose for this tool is to allow the development and evaluation
of algorithms for wavelength assignment, routing, dynamic reconfiguration and
restoration mechanisms without the expense of building a real network. There are
two major uses for MERLIN: as a tool for WDM network planning and as a tool for
WDM protocol performance analysis.

As a planning tool, a network planner can run the simulator with various network
configurations, traffic loads to obtain statistics such as wavelength utilization,
throughput rates, blocking probabilities. It could be used to answer questions such
as: what is shortest path between two nodes, how many wavelengths are utilized on
a path, will adding a new connection cause congestion. Statistics and routes are dis
played directly on the screen or could be logged in a data file for further processing.

As a protocol analysis tool, a researcher or protocol designer could study the total
system effect of particular prototcol. For example, one could investigate the effec-
tiveness of various reconfiguration algorithms for WDM networks and address
such issues as: mechanisms for dynamic provisioning, protocol overhead, through-
put. MERLIN can be easily extended to implement additional optical network con-
trol and management procedures such as performance monitoring, quality of
optical service provisioning, and fault detection and recovery.

The architecture of MERLIN consists of three major building blocks, namely, the
core, the plug-ins and the algorithms’ library. Each block along with its components
is a separate program that handles a specific aspect of the simulation process. Thi
architecture provides a modular plug-and-play platform that lets users add new
components such as algorithms and plug-ins and run them on different machines.
The main reason for this distributed design is to facilitate the utilization of several
computational resources (cluster of workstations, supercomputer) and distributed
data bases as needed. It addresses both scalability issues related to the manageme
of thousands of nodes in large networks as well as computational complexities
associated with wavelength assignment and routing algorithms. Another advantage
of this design is that it allows for language/system independent plug-ins and algo-
rithms. A programmer will be able to access MERLIN without reading the core
source code, since a standard communication interface is provided with the simula-
tor. Figure 1 describes the architecture of MERLIN and the communication
between the different blocks.

National Institute of Standards and Technology 17

What Is MERLIN?

Phy. Layer
B-NED

MERLIN
Virtual Topology Simulator

WEVEICILIGM (Reconfigurat

RE Assignment ion

FIGURE 1. MERLIN Global Architecture

MERLIN is based on a server/client architecture. The core is the main entity that
waits for user requests, analyzes the input parameters and dispatches the data to the
algorithms. It is implemented on the server’s side and acts as a daemon that is run
in the background. Its main task is to build the network vitual topology from a con-
figuration specified by the user that includes a physical network topology (links,
crossconnects, add/drop multiplexers) and a connection request matrix (source and
destination pairs) and dispatches it to the algorithms. It then collects the results
from the algorithms and send them back to the user via the plug-in interface (in text
form or GUI). There are about a dozen routing and wavelength assignment algo-
rithms currently in the library including: shortest path, and K-shortest path for rout-
ing, first fit, least used, most used and Tabu for wavelength assignment. The plug-in
interface provides a flexible user’s access to MERLIN. There are several types of
plug-ins such as simple text file, or interface to other simulator packages (physical

National Institute of Standards and Technology

Overview

layer, packet level simulators). MERLIN’s Graphical User Interface (GUI) is also
considered a plug-in.

EAMERLN nisnet.mil [_[5]x]

File Edt Topology Algorthm Condrol Help

DEHEHPPRXZoN G

2| ‘connections ithms |
: Links | Routes |
‘|| comvert Hodes | Hon Convert Nodes |

Clear Table
Name | BER | Dela
00 0.05

lomt 2]
+ [wa 0.0 0.05 7
S x lcaz 0.0 0.05
: A Aut 0.0 0.05
“lco 00 005
i 0.0 0.05
[Ine 0.0 0.04
Afic 0.0 0.05
i 0.0 0.04
I 0.0 0.05
lon 0.0 0.05 :
H [00 0.05 :
Xt p X X 3C Xa——a——»2 | [mD 0.0 0.05 =
Bl 0n 0o -]
| connections | Algori |
Links | Routes]
Y ‘|| convert Nodes | Non Comvert Nodes |
X : Clear Table

: Mame | Sourse | Desfin

||Link_cat_wa lcm Wia
b » 3 . |uiniCimn_ca1 v oAl b

Z||Link_CA1_CA2 |CA1 CA2 =

[luink_caza_car [caz CAT
[luink_car_ut [ear ut
f|Link uT_car uT CAl
[|Link_caz s [caz WA
[|uink_wa_caz v CA2
fluink e L WA

] | —:I «|gEE »

Drag and Drop Mode ‘

FIGURE 2. MERLIN GUI

Since measurements of network elements and optical signal characteristics are cru:
cial for developing effective management schemes for WDM networks, a plug-in is
currently being developed to interface with several device and component level
simulators commercially available such as ARTIS/OPTSIM and Virtual Photonics/
BNeD. These interface modules allow the users of MERLIN to include a high
degree of link and optical layer performance characteristics and accuracy in their
optical component models (crossconnects, converters, amplifiers, regenerators,
fiber links) such as BER, crosstalk, jitter, and power level.

National Institute of Standards and Technology 19

What Is MERLIN?

Core

MERLIN is based on a client/server architecture where the core is implemented on

the server’s side. It is acting as a daemon that is run in the background, and its main
task is to prepare and dispatch the data for the simulator plug-ins and algorithms.

The core collects the results of the simulation and sends them back to the user via
the plug-in interface.

Plug-ins

A plug-in allows a user to access MERLIN and the algorithm database. The role of
a plug-in is to send user’s requests to the core over the network interface, and col-
lect the results once the simulation terminates.

The information exchanged between the plug-in and the core is in the form of a text
script file describing the network component and topology including a list of con-
nection requests between pairs of source and destination nodes, and parameters for
the routing, reconfiguration algorithms to run.

The file has to obey a number of syntax rules syntax in order for MERLIN to under-
stand the requests and the different objects describing this file can be generated by
different programs such as tk&aphical User Interfacer the output of another
simulator after it has undergone the necessary translationGidgghical User
Interface help the user to build his/her own topology and requests by simple mouse
clicks. It will automatically generate the file and send it to MERLIN when
requested. The plug-in interface allows the user to use the results or file format
from other simulators and interface them to MERLIN. Through dedicated plug-ins

it is possible to get information needed from a physical layer simulator or higher
layer simulator (like the NIST ATM/HFC simulator) and translate the information
into the format recognized by the core. The example given in the Figure 3 on
page 21 is the full process description of the data exchange between the different
simulator entities in order to make a physical layer simulator (OptSim) communi-

National Institute of Standards and Technology

Overview

cate with MERLIN and routes and allocate wavelength given a list of connection
requests.

. Routing
o Modified
P Virtual
| Wavelength opology
Assignment

FIGURE 3. Data Exchange in MERLIN

The script file generated is sent to the communication API of MERLIN (based on
the UNIX socket interface) and is transported to the core by the physical network
cable. After building its internal data structure (i.e. the network virtual topology)
the core calls the algorithm and sends its newly created data structuRoUthng
algorithm takes the virtual topology and finds routes to the connections requested.
Then theWavelength Assignmeatgorithm tries to find an available wavelength

for the pre-determined route. The algorithms return to MERLIN the results of the
simulation by modifying the input data given to them and adding routes and wave-

National Institute of Standards and Technology 21

What Is MERLIN?

lengths to the traffic request. The results can be displayed @rdphical User
Interfaceas shown in Figure 4 on page 22.

M & N
File Edit Topology Algorithm Control Help

FIGURE 4. Example of results in the Graphical User Interface

Algorithms

The library of algorithms contains several classes depending on the type of opera-
tion the simulator is asked to perform. Four categories have been designed so far
and they includeRouting Wavelength AssignmerReconfigurationand Restora-

tion. Each category contains a list of algorithms. It is important to understand that
the algorithm database is tightly associated with MERLIN's internal representation
of the network topology.

Future Extensions

22 National Institute of Standards and Technology

CHAPTER 2

Getting Started

MERLIN runs on UNIX systems and has been tested under Silicon Graphics/Irix,
Sun/Solaris, and PC/FreeBSD environments. There are no MS-DOS or Windows
95/98 versions available at this time. Some libraries are required in order to build
the executable code associated with the simulator. If you any problems due to miss-
ing library files, the user is advised to his/her system administrator. In this chapter,
the reader will learn the basic features of MERLIN including installation tips in
order to get familiar with the MERLIN tool and get started.

MERLIN Installation gives detailed instruction on how to install the software
archive.

Directory Structure is an overview of the archive directory tree and is useful to
understand the organization of the different modules of MERLIN.

Running A Simulation provides an example of how to use the text plug-in in
order to ask MERLIN to launch some of algorithms located in the database.

Analyzing The Results describes the interpretation of simulation results of a
simulation returned by MERLIN.

National Institute of Standards and Technology 23

Getting Started

MERLIN Installation

In order to install the simulator on a given machine, you first have to decompress
the archive. This can be done using a combination of two utitdieandgzip. If

you encounter any errors in the installation process of the software, please refer to
the Frequently Asked Questiosection and check with your system administrator
that both the utilities and libraries are correctly installed on your machine. In the
directory where the compressed archive is located, type the following command in
your shell, whereX andY are the version number and the revision number of the
software package respectively:

gzip -cd merlin++_vX.Y.tar.gz | tar xf -

At this point, you should have the directory tree structure. This structure will be
presented in details later in the chapter. presented in the next point of this chapter.
In order to build the executable codes needed to run a simulation, you have to go in
the source directory. Please enter at the shell prompt the following command:

cd merlin++_vX.Y/src

Then you need to use tkenfigurescript in order for MERLIN to detect the com-
ponents installed on your system and needed in the compilation process. The con-
figure script allows the user to choose several option such as the destination
directory for the binaries, or the debug mode for developers only. For the novice
user, the use of this script is straightforward. More details concerning the options of
the script can be found in the secti@anfigure Scripin the Appendix. For a quick
installation, no options need to be selected any options. At the prompt in the current
directory type :

.Jconfigure

If no errors occur, you can compile the entire application by entering the following
command at the prompt:

make ; make install

This will compile all the modules of MERLIN and install the software in the instal-
lation directories. In order for the core of MERLIN to find the algorithms on your
computer, you must specify an environment variable navhEBLINPATH This
variable must point to your installation root directory. This can be done in several

24

National Institute of Standards and Technology

Directory Structure

ways depending on your shell. We recommend to set this variable in your shell

resource file (.tcshrc, .bashrc, etc.). Here is a way to do it under two of the most
commonly used shells. Just edit your resource file and add the corresponding line at
the end:

under TCSH setenv MERLINPATH /home/my_local_directory/merlin++
under BASH declare -x MERLINPATH="/home/my_local_directory/merlin++"

After restarting a new shell, you are now ready to use MERLIN.

Directory Structure

The MERLIN archive is organized in several parts in order to allow for easy
retrieval and efficient storage of the information. Some of the directories are cre-
ated when the archive is decompressed, and others are created by the installatio
process. After installing the simulator in a directory, the archive contains the fol-
lowing main tree of directories:

merlin++ Root directory
Created by the installation process
algorithm Binary code of the algorithms
routing Routing algorithm class
wavelength Wavelength algorithm class
reconfiguration Reconfiguration algorithm class
gos Quality of Service algorithm class
bin Binary code of the daemon
lib Merlin development library
plug-in Plug-ins
Created when decompressing the archive
WWW Reference manual of the classes (HTML format)
example Some topologies, and examples of MERLIN files
src Sources of Merlin, Plug-ins and algorithms
algorithm Sources of all the algorithms implemented
routing Routing algorithm class
wavelength Wavelength algorithm class
reconfiguration Reconfiguration algorithm class
gos Quality of Service algorithm class
merlin Sources of MERLIN core

National Institute of Standards and Technology 25

Getting Started

components Components used in the topologies
math Standard types library
merlin Core sources
network Network API
parser Input file parser
tool Development tool library
plug-in Sources of the Plug-ins
template Templates of the communication API and Makefiles

Running A Simulation

After completing the installation process, you now ready to run a simulation.

Launching the daemon

The daemon is the core of MERLIN. In order to use it, just launch the executable
file that is located in thbin directory of this archive.

Jmerlin

It is important to set correctly the MERLINPATH variable on the machine where
you are running the daemon. Please refer to the previous section concerning the
installation of the simulator in order to set the variable. The daemon waits until a
plug-in connects to it, and then based on the requests specified in the plug-in,
launch the appropriate algorithm. If you only want to check the version of the sim-
ulator that you are running, launch the daemon with the -V option. Try the follow-
ing command in your shell;

Jmerlin -V

This will display a message indicating the version and revision number of the soft-
ware, and the operating system on which it has been compiled. After displaying the
message, the core of MERLIN stops. If you want to run a simulation, you have to
launch the daemon again without the -V option.

National Institute of Standards and Technology

Analyzing The Results

Using MERLIN plug-ins.

The plug-ins are located in tipdug-in directory of the archive. They all require a
basic set of parameters and for some plug-ins additional parameters are required
The port number requested by the application is the port numB&0&dThis port

must be available in order for a normal operation. The set of parameters for a stan-
dard plug-in is:

Plug-in name, Daemon’s machine Port number [Extra parameters]

FIGURE 5. Plug-in parameters

Plug-in Examples

The plug-in KILL is a basic program that allows you to end remotely the daemon
when this one is running on a distant machine. It only takes the basic set of parame-
ters and can be launched as follows:

kill localhost 2507
Another plug-in is the MERLIN text file application that takes a configuration file,
sends it to the daemon and gets back the results. The use of this plug-in is as fol-
lows:

merlin localhost 2507 input_file.mrl output_file.mrl

Try the last one if you want to run a simulation based on a configuration that is
already in the example database.

Analyzing The Results

The result of a simulation is a text file containing a description of the topology and
parameters values characterizing the algorithms. Not all the parameters have a
meaning for every type of algorithm. These parameters are the following:

National Institute of Standards and Technology 27

Getting Started

AVERAGE_HOPS

For a routing algorithm, this is the average number of hops of each computed route.
For the other type of algorithm, the value is either O or the value taken by a preced-
ing routing algorithm.

USED_WAVELENGTH

This the total number of wavelength used in the wavelength allocation. An wave-
length allocation algorithm tend to minimize this value. It has no meaning for a
routing algorithm and take the value O.

THROUGHPUT

For a routing algorithm, this is the total number of established routes. For the other
types of algorithm, it has no meaning and the value is either O or the value taken by
a preceding routing algorithm.

UTILIZATION

For a routing algorithm, it has no meaning and takes the value 0. For a wavelength
allocation algorithm this is given by the following formula:

total number of lightpath / number of links in the topology
BLOCKING_PROBABILITY

For a routing algorithm, this is the number of connections for which the algorithm
did not find a route. For a wavelength allocation algorithm, this is given by the fol-
lowing formula :

total number of connections requested - number of established routes.
WAVELENGTH_REUSABILITY

for a wavelength allocation algorithm this is given by the following formula :

number of established routes / number of colors used.

28

National Institute of Standards and Technology

Analyzing The Results

COMPUTATION_COMPLEXITY
This is the time (in seconds) used by the algorithm in order to compute the results.
COST

The cost is computed by a cost function located in each route object. Currently, this
function return the number of links used by the route.

WAVELENGTH_AVAILABILITY

This parameter is currently not used.

National Institute of Standards and Technology 29

Getting Started

30

National Institute of Standards and Technology

CHAPTER 3

Configuration File

This chapter describes the syntax of a MERLIN configuration file. It gives to the
user the possibility to create his own topology and connection requests. In order for
MERLIN to work the user must feed the core with a script file containing some
instructions. The core parses the script in order to retrieve the information, and if
the syntax is correct, performs the computation of the algorithms. Programming
technigues that allow the user the user to modify the syntax of the script file are
beyond the scope of this section and will be described in more det&llsti2,
Chapter 3: MERLIN's Grammait is important to note that the syntax of a MER-
LiN script file is close to C programming language syntax.

The File Structure describes the required main components of a script file.

Describing The Components introduces the component used in a topology and
they descriptive parameters in the script file.

Describing The Actions describes how to make a request for an algorithm in a
script file.

Example provides a working example of a MERLIN file that is found in the
archive.

National Institute of Standards and Technology 31

Configuration File

File Structure

In order for the MERLIN core to build its internal structure, a MERLIN script file
MUST include two major components:

* A TOPOLOGY,
¢ And anACTION block.

Onces these two blocks are defined, each must contains the description of the dif-
ferents elements composing the user’s request.

Topology

The topology part contains the description of the network virtual configuration. It
describes the nodes, the links and the routes. The topology block is declared as fol-
lows:

TOPOLOGY

{
}

Action

The action part contains the description of the algorithms to launch using the previ-
ously described network topology. The description of an algorithm contains the
algorithm’s name, the machine location, and a set of parameters depending on the
type of algorithm. The action part is declared as follow:

ACTION

{
}

Describing The Components

The TOPOLOGYpart contains the definition of all the components of the virtual
network. Each component type is grouped into a block. There are six block catego-
ries:

* NODE,

32

National Institute of Standards and Technology

Describing The Components

¢ LINK,

¢ CONNECTION,
¢ ROUTE,

¢ WAVE.

Node

The node block groups all the nodes of the user’s virtual topology. The syntax is:

[NODE_BLOC]
{

}

Inside this block, the characteristics of the nodes must be defined. Two types of
nodes are present in MERLIN:

* CROSS-CONNECT CONVERT,
* CROSS-CONNECT NON-CONVERT.

Each one of these types of node contains a set of attributes (or Qos parameters) an
a switch table indicating how the wavelengths are switched at the nodes. The
attributes of a node are:

BER Bit error rate generated by the node. It is a float value.
DELAY Delay generated by the node.lt is a float value.
JITTER Jitter generated by the node.lt is a float value.

BW Bandwidth available on this node. It is a float value.

OP_TYPE This flag indicates if the node is used as protection or as normal.
It can take two values: NORMAL or PROTECTION.

MODE This flag indicates if the node is used or not. It can take two values:
USED or NOT_USED

STATUS This flag indicates if the node is failed or not. It can take two values:
FAILED or WORKING.

SWITCH_TABLE Every line in this table represents a connection.
When a connection is established between two nodes, a

National Institute of Standards and Technologyy 33

Configuration File

line is created in the switch table of each node crossed
by this connection.

Here is an example of two different nodes declaration inside a node block:

[NODE_BLOC]

{
OXC_CONVERT OXC1

{
BER0.2;
DELAY 0.1;
JITTER 0.05;
BW 155;
OP_TYPE PROTECTION ;
MODE NOT_USED ;
STATUS WORKING ;
SWITCH_TABLE
{
}

}

OXC_NON_CONVERT OXNC1

{
BERO0.1;
DELAY 0.2 ;
JITTER 0.07 ;
BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
SWITCH_TABLE
{

)

Another way to declare nodes is to use a default statement and short definitions of
nodes. A default statement describes the default values to use in the component
declaration.

DEFAULT OXC_CONVERT
{

34

National Institute of Standards and Technology

Describing The Components

BER 0.2;

DELAY 0.1;

JITTER 0.05;

BW 155;
OP_TYPE PROTECTION ;
MODE NOT_USED ;

STATUS WORKING ;
SWITCH_TABLE

{

}
}
OXC_CONVERT OXC1;
OXC_CONVERT OXC2 ;

The attributes of nodes OXC1 and OXC2 defined with the short definition uses
values sat by the settings.

Link

The link is a trunk of fiber where each fiber contains a number of wavelength. and
lambdas connecting two different nodes. Each link MUST be declared inside a link
block and the syntax of a such block is as follows:

[LINK_BLOC]
{

}

The following attributes are used to describe a link:

DISTANCEPhysical length of the link. Its value is a float.
NB_AMPLIFIERNumber of amplifiers along the link. Its value is an integer.

NB_REGENERATORNumber of regenerators along the link. Its value is an inte-
ger.

FIBER_RATIO Number of fibers composing the link. Its value is an integer.
LAMBDA_RATIO Number of wavelengths per fiber. Its value is an integer.
BER Bit error rate generated by the link. Its value is a float.

DELAY Delay generated by the link. Its value is a float.

National Institute of Standards and Technologyy 35

Configuration File

JITTER Jitter generated by the link.Its value is a float.

BW Bandwidth available on this link.Its value is a float.

OP_TYPE This flag indicates if the link is used as protection or as normal.
It can take two values: NORMAL or PROTECTION.

MODE This flag indicates if the link is used or not. It can take two
values: USED or NOT_USED.

STATUS This flag indicates if the link is failed or not. It can take two

values: FAILED or WORKING.

LAMBDA_LIST This list contains the wavelengths which have not the same
state, mode or operational type as the the link. Typically,
the wavelengths used by a connection or failed when the link is
working are in this list.

Here is an example of the declaration of a link declaration:

[LINK_BLOC]

{
LINK OXC1_0OXC2 OXC1 OXC2

{
DISTANCE 2;
NB_AMPLIFIER 10 ;
NB_REGENERATOR 10;
FIBER_RATIO 10 ;
LAMBDA_RATIO 4 ;
BERO.4;
DELAY 0.3;
JITTER 0.05;
BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
LAMBDA_LIST
{
2 NORMAL NOT_USED FAILED ;
3 NORMAL USED WORKING ;
12 PROTECTION NOT_USED FAILED ;
}

}

}

Similar to a node declaration a link can be declared using default settings:

36 National Institute of Standards and Technology

Describing The Components

DEFAULT LINK

{

DISTANCE 2;

NB_AMPLIFIER10 ;

NB_REGENERATOR10;

FIBER_RATIO 10 ;

LAMBDA_RATIO 4

BER 04;

DELAY 0.3;

JITTER 0.05;

BW 135;

OP_TYPE NORMAL ;

MODE NOT_USED ;

STATUS WORKING ;

LAMBDA_LIST

{
10 NORMAL NOT_USED FAILED ;
33 NORMAL USED WORKING ;
42 PROTECTION NOT_USED FAILED ;

}

}

LINK OXC1_OXC2 OXC1 OXC2;

In this example, link OXC1_0OXC2 connects nodes OXC1 and OXC2 and takes the
attributes of the default declaration.

Connection

A connection is defined in a connection block. It represents a lightpath established
between two nodes. A connection is associated WRDBITEin MERLIN as it is
described in thé?art2, Chapter 3: Component Hierarchf connection block is
defined as follows:

[CONNECTION_BLOC]

{
CONNECTION C1
{
START OXC1;
DEST OXC2;
DISTANCE 3 ;
BER 0.4 ;

National Institute of Standards and Technologyy 37

Configuration File

DELAY 0.3 ;
JITTER 0.04 ;
BW 120;

}

The attributes of a connection are the starting and ending node and some restrictive
parameters used for the QoS:

START The source node name.
DEST The destination node name.

DISTANCE The distance requested for this connection between the source and
destination nodes.

BER The bit error rate requested for this connection.
DELAY The delay requested for this connection.
JITTER The jitter requested for this connection.

BW The bandwidth requested for this connection.

No default tag has been defined for this type of block.

Route

A route is declared in the route request block. Usually, a route is generated by a
routing algorithm for a given connection. A route consists of all the link and nodes
that a lightpath traverses between a source and destination pair. The route structure
in MERLIN contains a list of nodes, links and their attributes. Note that these
attributes are output parameters since they are returned by the routing algorithm.
The attributes of a route are as follows:

The meaning of a such structure is te determine if there is a possible physical way
to cross the network between two nodes. It contains a list of nodes and some
attributes calculated from the nodes and the links crossed by the route. The
attributes of a route are:

CONNECTION The name of the associated connection.

DISTANCE The physical distance of the route computed as the sum of the
distances of the links on the route.

38

National Institute of Standards and Technology

Describing The Components

BER Bit error rate; its value is calculated from the ber of the
links and the nodes crossed by the route. It is computed as
follows:

DELAY end-to-end delay between the source and destination pair. This

delay is the sum of the links propagation time and any delay
incurred at the nodes.

JITTER The jitter is derived from the jitter of the nodes and links on the
route. It is computed as follows:

BW The bandwidth calculated from the bandwidth of the nodes and
the links on the route. It is computed as follows:

The declaration in the script file of a route is as follows:

[ROUTE_BLOC]

{
ROUTE ROUTE_1
{
CONNECTION OXC1_OXC2 ;
DISTANCE 3;
BER 0.4 :
DELAY 0.3;
JITTER 0.04 ;
BW 120 ;
NODE_NAME_LIST OXC1 OXC3 OXC4 OXC2 ;
}
}
Wave

A wave is declared in the wave block. For each lightpath established between a
source and destination node, there needs to be an associated wavelength that i
defined on each link traversed.A wave object indicates which wavelength is used
on each link. The attributes of a Wave are:

ROUTE The route associated to this ligthpath.

WL_ASSIGNED_LIST The list of the wavelength assigned to this ligthpath.

In the list of wavelength assigned, the structure is reduced to two fields:

LINK The name of the link where the lambdas are used

National Institute of Standards and Technologyy 39

Configuration File

LAMBDA The list of lambdas used by the ligthpath on the
previously declared link.

A wave object is declared as follow:

[WAVE_BLOC]

{
WAVE

{
ROUTE ROUTE_1;
WL_ASSIGNED_LIST

{

{
LINK OXC1_OXC3;

LAMBDAZ ;
}

{
LINK OXC3_OXC4 ;

LAMBDAZ ;
}

{
LINK OXC4_OXC2;

LAMBDA 2 ;
}
}

The Actions

In order for MERLIN to apply an algorithm to the previously described topology,
the user needs to indicate in the action block a list of algorithms to launch. Each
action tag is different depending on the action performed, but they all obey the
same syntax rules for the attributes:

ACTION It is a tag that contains a description of the action and a
set of parameters.

ALGO_LOCATION This attribute has two values separated by a space. The
first is the IP address (or name) of the machine where
the daemon is running, and the second is the location of
the algorithm, relative to the environment variable

40

National Institute of Standards and Technology

The Actions

MERLINPATH. The concatenation of the environment
variable MERLINPATH and algo_location should give
an absolute path. This path is used by the daemon to
locate the algorithm, so it is absolutely necessary to set
the MERLINPATH variable correctly(segetting

Started.

LIST OF PARAMETERSEach algorithm uses a set of parameters, that is
different depending on the type of the algorithm.

Here is an example for the CREATE_ROUTE action (used to launch the routing
algorithms):

ACTION
{
CREATE_ROUTE
{
ALGO_LOCATIONIocalhost/algorithm/routing/
shortest_path ;
CONNECTION C1
{
START OXC1;
DEST OXC2;
DISTANCE 3;
BER 0.04 ;
DELAY 0.5;
JITTER 0.1 ;
BW 3.5;

}
}

Here is the list of all possible actions:
CREATE_ROUTE
ASSIGN_WAVELENGTH
RECONFIGURATION

ADD_CONNECTION

National Institute of Standards and Technologyy 41

Configuration File

REM_CONNECTION
LINK_FAILURE
NODE_FAILURE

Some algorithms have been developed for the first three actions. Here are examples
showing how to declare them:

CREATE_ROUTE:

CREATE_ROUTE {
ALGO_LOCATION localhost /algorithm/routing/shortest_path

CONNECTION C2 {
START OXC1;
DEST OXC3;
DISTANCE 5;

BER 6;
DELAY 7;
JITTER 8;
BW 9.3;
}
}

ASSIGN_WL

ASSIGN_WL {
ALGO_LOCATION localhost /algorithm/wavelength/tabu ;
CONNECTION C2;

}

RECONFIGURATION

RECONFIGURATION {
ALGO_LOCATION localhost /algorithm/reconfiguration/
first_fit_reconf

CONNECTION C2 {
START OXC1;
DEST OXC3;
DISTANCE 5 ;
BER 6;
DELAY 7;
JITTER 8;
BW 9.3;

42 National Institute of Standards and Technology

Example File

}
CONNNECTION_MAX 40 ;

MEAN_CONNECTION_SET 5;
}

Example File

A mesh network
(10 nodes, 13 bidirectional links)
TOPOLOGY {
All the nodes are considered the same
[NODE_BLOC]
{
DEFAULT OXC_CONVERT
{
BER 0.2;
DELAY 0.1;
JITTER 0.05;

BW 155;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;

SWITCH_TABLE {

}
}
OXC_CONVERT OXC1;
OXC_CONVERT OXC2;
OXC_CONVERT OXC3;
OXC_CONVERT OXC4
OXC_CONVERT OXC5;
OXC_CONVERT OXC6 ;

}

#LINK BLOC

[LINK_BLOC]
{
DEFAULT LINK {
DISTANCE 20;

National Institute of Standards and Technologyy

43

Configuration File

NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC1_OXC2 OXC1 OXC2 {

DISTANCE 2;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC1_OXC4 OXC1 OXC4 {

DISTANCE 5;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4,

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;

National Institute of Standards and Technology

Example File

LAMBDA_LIST {
}

}

LINK OXC1_OXC3 OXC1 OXC3 {

DISTANCE 16
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA RATIO 3;
BER 0.4:
DELAY 0.2:

JITTER 05 ;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {

}

}
LINK OXC1_OXC6 OXC1 OXC6 {

DISTANCE 9;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC2_OXC3 OXC2 OXC3 {

DISTANCE 3;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

National Institute of Standards and Technologyy

Configuration File

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC2_OXC4 OXC2 OXC4 {

DISTANCE 2;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC3_OXC2 OXC3 OXC2 {

DISTANCE 4,
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC4_0OXC2 OXC4 OXC2 {

National Institute of Standards and Technology

Example File

DISTANCE 2;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {

}

}

LINK OXC4_OXC3 OXC4 OXC3 {
DISTANCE 10
NB_AMPLIFIER 2:
NB_REGENERATOR 7 ;
FIBER_RATIO 2;

LAMBDA _RATIO 3;

BER 0.4:

DELAY 0.2:

JITTER .05 ;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {

}

}
LINK OXC4_OXC5 OXC4 OXC5 {

DISTANCE 8;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

National Institute of Standards and Technologyy

Configuration File

STATUS WORKING ;
LAMBDA_LIST {
}

}
LINK OXC5_0OXC3 OXC5 OXC3 {

DISTANCE 9;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05;

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {

}

}
LINK OXC6_OXC2 OXC6 OXC2 {

DISTANCE 10;
NB_AMPLIFIER 2;
NB_REGENERATOR 7 ;
FIBER_RATIO 2;
LAMBDA_RATIO 3;
BER 0.4;

DELAY 0.2;
JITTER .05

BW 135;
OP_TYPE NORMAL ;
MODE NOT_USED ;

STATUS WORKING ;
LAMBDA_LIST {
}
}
}
[CONNECTION_BLOC]

{
}

National Institute of Standards and Technology

Example File

[ROUTE_BLOC]
{

,
[WAVE_BLOC]
{

X
}

ACTION {

CREATE_ROUTE {
ALGO_LOCATION localhost /algorithm/routing/shortest_path

CONNECTION C2 {
START OXCL1:
DEST OXC3;
DISTANCE 5 ;

BER 6;
DELAY 7;
JITTER 8
BW 9.3;
}
}

ASSIGN_WL {
ALGO_LOCATION localhost /algorithm/wavelength/tabu ;
CONNECTION C2;
}
}

National Institute of Standards and Technologyy

49

Configuration File

50

National Institute of Standards and Technology

CHAPTER 4

Graphical User Interface

Getting started

The Graphical User Interface (GUI) of the MERLIN tool has been built in order to
help the user creating small configuration files and quickly analyze the perfor-
mance results of the algorithms. This section provides the user with a complete ref-
erence of the possibilities offered by the GUI.

Getting started gives basic instructions concerning the installation process and
the requirements in order to run the interface, and an overview of the interface.

Creating a configuration provides some information in order to quickly create a
topology, and run simulation of the configuration and algorithm selected in MER-
LiN,

Open an existing configuration describes an opening file and its associated
dialog box,

Topology information panel explains manipulating of the display information,
and describes all the fields of the information panels,

Customizing the document display gives basic tips in order to use the display
or make it more readable,

Saving a configuration file analyzes scripts by saving or exporting results.

National Institute of Standards and Technology 51

Graphical User Interface

Installation requirements

The GUI has been developed as a plug-in. It is an external application using the
resources offered by the MERLIN tool. Thus the MERLIN server should be
installed on your local computer, or on a distant machine in order to perform and
retrieve the information from a simulation. Please make sure that MERLIN has
been correctly installed by following the installation procedures explained in the
corresponding Chapter of this user’s manual.

In order to be compatible with most platforms, the application is developed using
the Java technology and compilers. You have to make sure that every component of
the Java compiler and development kit are present on your local computer. The
GUI has been developed and tested under the Java Development Kit (Jdk) 1.1.7,
and the compliance has not been tested with later versions. The Java Swing 1.1.1
package is also needed in order to run the interface, and the compatibility with later
versions is not ensured as well. Please refer to the specific installation documenta-
tion of these products in order to get the installation and compatibility information.
For convenience, you should be able to find some information and downloads from
the following URL:

Java Development Kit- http://java.sun.com/products/jdk
Java Swing- http://java.sun.com/products/jfc

First, make sure that all the components needed to build the interface are installed
and working. If you are running the Unix version, the GUI should be located where
all the plug-ins have been installed (when performing the MERLIN installation pro-
cess). To run the GUI under Windows, download the directory gui from the unix
version to your local computer. Once this operation is performed, change your cur-
rent directory to the GUI directory and check if the fiBui.class” and“Merlin-
GUljar" are present. If any of these file are missing then the installation process
will fail.

If you have downloaded the entire MERLIN archive on your local PC, and you
have the Jdk and Swing installed on your Windows system, you can compile the
GUI directly at the MS-DOS prompt. Go to the GUI source directory located in
“merlin++/src/plug-in/gui” and enter:

Batch\Comp

This will compile the GUI and if no error occurs, it will make all the objects
required to run the application on your PC.

52

National Institute of Standards and Technology

http://java.sun.com/products/jdk
http://java.sun.com/products/jfc
http://java.sun.com/products/jdk

Getting started

How to launch the Graphical User Interface?

The MERLIN daemon must be running when launching the GUI in order to retrieve
the list of algorithms available in the database. If the MERLIN server is not avail-
able, the GUI will still be able to work but in a limited version. You will not be able

to send any requests, and to simulate any configuration file. You must be in the
directory where the GUI has been installed, and if the daemon is installed and run-
ning properly, you can enter in your shell or MS-DOS prompt the following com-
mand:

java Guiservername

where ‘servername”can be either localhost if you are running the server on the
same machine than the interface, or a distant machine’s name, or even the IP
address of the MERLIN server machine. Exampl®sa Guilocalhost java Gui
myhost.nist.goyvjava Gui149.140.60.51f the GUI can not reach the MERLIN
server for any reason, you will get a warning message or an error message in yout
shell or MS-DOS prompt. Please see the troubleshooting section in order to solve
the common problems encountered by the users. After Java has initialized all the
components and objects of the interface, the interface presented in Figure 6 appea
on your screen.

Menu Bar Shortcut Tool Bar

DR 2 x=>=q

=1{|(Comvert Nodes |Nan Comvert Nodes | Links | Connections | Routes | Algorithms |
Clear Table Delete Node(s)

= Name | BER | Delay | Jiter | BandWidth | OpType | Mode |

Information Panel 1

o T |

Gra p h ic Pane | Convert Nodes |Non Convert Nodes | Links | Connections | Routes |
Clear Table Delete Node(s)

Name BER Delay Jifter | Bandwidth |_Op Tyne Made

Information Panel 2

Status Bar

}! = 3
. e
-

FIGURE 6. Graphical User Interface overview

National Institute of Standards and Technology 53

Graphical User Interface

Shortcut Tool Bar

The shortcut tool bar is a set of icons that helps to do common tasks quicker. The
different tasks have been divided into four categories: the file management, the dis-
play settings, the topology creation and the component information as shown in
Figure 7. Most of the icons are exclusive in their own category, and the use of one
removes the selection of the others.

Dl P P XZ=:= L3

FIGURE 7. Shortcut Tool Bar

File management

Erase the current topology, and start over from a blank

O screen. This shortcut is equivalent to the menu File>New.
- Open and load an existing document. This shortcut is equiv-

- alent to the menu File>Open.

=) Save the current configuration. This shortcut is the equiva-
lent of the menu File>Save.

Display Settings

Zoom In the current displayed topology. This shortcut cor-

¥ respond to the Display>Zoom In menu.

o Zoom Out the current displayed topology. This shortcut is

identical to the Display>Zoom Out menu.

Topology Creation

Create a new Cross Connect with wavelength conversion.
Same as the menu Edit>Create>CfosanectConvert.

%]

Add a new Cross Connect without wavelength conversion.
Equivalent to Edit>Create>Cross Connect Non Convert.

National Institute of Standards and Technology

Getting started

Create a new Link between two nodes. Equivalent to the
menu Edit>Create>Link.

. Create a new Connection request between two nodes.
e Equivalent to the menu Edit>Create>Connection.

Component Information

inside the topology displayed.

Node information. Select and add in the information panel
all the nodes inside the boundary box drawn. It will add
automatically in the other panel the dependencies of the
node (like the associated links, connections,...)

IE Node selection. Select and allow the user to move nodes

Thumbnails Overview

The thumbnails are located in the information panels. These are designed in order
to observe and modify the information of the components, algorithms and results
currently displayed in the interface.

[Convert Nodes [[Non Convert Nodes | Links | Connections [Routes | Algorithms

FIGURE 8. Thumbnails overview

As presented in the Figure 8, each thumbnail is clickable and displays some infor-
mation on the configuration. A full description of each field and its meaning is pro-
vided in theTopology Information Panedection of this Chapter. Two thumbnails
panels have been implemented in the interface in order for the user to compare
related information of the current topology.

Getting/Setting information

Use thée'Information” shortcut icon in order to select the components to display in
the thumbnail panels. Once the information button is selected, click on one node in
order to add it to the list of selected nodes. If you want to select several nodes, left

National Institute of Standards and Technology 55

Graphical User Interface

click on a blank portion of the graphical zone, and drag the mouse. A red box
should appear following the mouse movements as shown in Figure 9.

[EMERLIN Graphical User Interface - testi 5.mil [[E1]
Fle Edi Topology Algorthm Cortrol Hel

DEE| P2 X =ik

1| Corvert Nades [Non Convert Nodes | Links | Connections | Routes | Algorithms |
Clear Table Delete Node(s)

Neme | BER | Delay | Jifter | BandWidth | OpType | Wode

0 00 [L |NOT_USEI
ut 0.0 0o 0o 156.0 NORMAL _|NOT_USE
co 0.0 0.0 0.0 156.0 NORMAL |NOT_USE

I

[Convert Nodes | Non Convert Nodes | Links | Connections |Routes |
Clear Table Delete Node(s)

Name | BER | Delay | Jiter [Bandividth | OpType Mode:
wa 0.0 00 00 1550 NORMAL _|NOT_USE
ut 0.0 00 00 1560 NORMAL |NOT_USE
co 0.0 0o 0o 155.0 NORMAL [NOT_USE

FIGURE 9. Information selection on components

The selected components like the nodes and links appear in their respective thumb-
nail panels. To change the information of a field, display the thumbnail panels and
go to the line associated with the component to edit. Then click with the left mouse
button on the field, and enter a new numeric value or name. Some fields have
restricted choices that will appear as a list of choices. Select one of them and it will
be the new value for the field.

Another way to get some information on the nodes is to uséPttoperties”

option of the floating menu over a node. Select a node of the topology with the
mouse pointer and click on the right mouse button. The floating menu presented in
Figure 10 will appear.

Celete
—— Properties
FIGURE 10. Node Properties

National Institute of Standards and Technology

Getting started

Once the'Properties” option is selected, another window will appear displaying
the characteristics of the node. Each field is for information only and can not be
changed. Figure 11 represents a typical properties window for a node.

E%Node Properties : TX M= E

TX Caomvert Crass-Connect

BER.: 0.0

DELAY : 0.0

JITTER:: 0.0

BANDWIDTH : 155.0

OPERATING TYPE : MNORMAL

MODE : NOT_IISED

STATUS : WORKING

Links Source: Links Destination:

TH_GA |~ ||GA_Tx =

TH_CO [||co_Tx [

TH_MD | |MD_TH -
OK

FIGURE 11. Properties Window for a Node

This window can be iconified for later use or dismissed when clicking di®otie
button (or when closing the window).

Status Bar

Each time you are doing an action in the interface a message is displayed at the bot
tom of the window, in the status bar. This bar is divided in two parts as shown in the
Figure 12.

\ Action information | Topology information

FIGURE 12. Status Bar Overview

The action information is the result of an action or the type of action the interface is
expecting. The topology information is used in order to determine the component

National Institute of Standards and Technology 57

Graphical User Interface

that is being pointed to by the mouse. This is useful in order to quickly determine
the name of a node when creating a link or connection request.

Creating a configuration

In order to build a topology, it is recommended to first place several nodes on the
graphical display, and then connect them and create requests for connections. This
section explains step by step the process of building a configuration and editing it.

Creating nodes

Select the type of node you want to create using the menu Edit>Create>Cross Con-
nect Convert or Edit>Create>Cross Connect Non Convert, or the similar icons on

the shortcut tool bar. Then click on the graphical zone in order to place a new node.
Each time a node is created, the interface will prompt you for a name in a dialog

text box as shown in the Figure 13.

Enter a name:
‘Comﬂ |
| Ok H Cancel |

FIGURE 13. Node Name Prompt

It is important to choose carefully the name of your node, as this one can not be
changed later. In order to change the name of a node, you will have to delete it and
consequently its associated structures (links, connections, routes,...) and recreate it.
Once a node is created, you can move it within the graphical zone by clicking on
the“Selection” arrow icon of the shortcut tool bar, or modify the different fields by
clicking on the‘Information” icon and change the fields values in the correspond-
ing thumbnail (Se&etting/Setting Informatiom this Chapter). If at the prompt for

a name you finally do not want to create the node, click orCHreelbutton or

close the window and no changes will be applied to the topology.

58

National Institute of Standards and Technology

Creating a configuration

Creating Links

Select the menu Edit>Create>Link or the link icon in the shortcut tool bar, then
click on the source node for the link. You will note that the status bar will prompt
you for a destination node. The last step is to select a destination for the link and
click on it. A link going from the source to the destination node should appear on
the screen.

Creating Connection Requests

When the full topology is created, and if you wish MERLIN to compute routes or
find wavelength assignment, you have to first create some connection requests
between nodes.

Select in the menu Edit>Create>Connection or use the dedicated connection icon in
the shortcut tool bar. The selection is similar to a link as you have to select the

source node first, and then a destination node by clicking on each one. The status
bar indicates the node selected. When created, the connection request is displaye
in the connection thumbnail panel.

Deleting Nodes

To delete a node, you have to be in‘tBelection” mode accessible from the short-
cut tool bar. Place the mouse on the node you want to delete and right click with the
right mouse button. The floating menu presented in the Figure 14 will appear.

» Delete

Properties

FIGURE 14. Delete Nodes

Selecting the Delete option of this menu will remove the node from the graphical
zone. When a node is deleted, all the resources and structures associated ar
destroyed. The links associated are removed from the screen and the thumbnail
panels, and connections using the node are removed from the lists. The routes using
the node are no longer valid.

National Institute of Standards and Technology 59

Graphical User Interface

Deleting Links

The deletion of a link alone is done in the link thumbnail panel. In order to select a
link and display it in the panel, you have to select at least a node connected to the
concerned link. Click on thnformation” icon of the shortcut tool bar and click

on a node connected to the link you want to remove. Then go to one of the informa-
tion panel and choose to see the link thumbnail panel where you should see a list
containing the link that has to be removed. Left click with the mouse on the line
you want to remove, and maintain the mouse button a few seconds until the back-
ground color of the line changes. You are also allowed to select several lines in the
table by maintaining the left mouse button and drag the mouse over the lines you
want to delete. Then click on tfiBelete Link(s)” button on top of the thumbnail
panel, and the links will disappear from the list. All the structures associated with
the links selected will be removed such as the calculated routes using them. The
nodes and connection requests will remain unchanged.

Some key combinations are allowed in order to select several links easily. Selecting
a line and maintain the SHIFT key will, on the next left mouse button click select all
the links between the link selected and the one currently under the mouse pointer.
Using the CTRL key selects non-consecutive links in the list.

Deleting Connection Requests

Deleting a connection request is similar to a link deletion. Display the thumbnail
panel associated with the connection in one of the information panel, and select one
or several connection to be removed (sedigeting Linksparagraph for selection

tips). Then click on théDelete Connection(s)’button that will remove the internal
structures of the selected connections and the associated routes.

An efficient way to get familiar with the GUI is to start from an already created
topology. Some example files are provided with the MERLIN archive, and it is rec-
ommended for beginners to modify an existing configuration (Se®peaing an
existing configuratiorof this Chapter). Try to add more nodes or delete some in
order to see the actions associated with the menus and icons.

Simulate the configuration in MERLIN

When the topology, connection requests, and algorithm selection are ready, choose
the Control>Start option in the menu bar in order to send the request to the MER-

60

National Institute of Standards and Technology

Opening an existing configuration

LiN server. Once the results are ready, check the thumbnail panels in order to
observe the results in the algorithms performance panel and route panel.

Opening an existing configuration

Opening a configuration file can be done using the shortcut tool bar icon or by the
menuFile>Open Each time a new configuration is loaded, the interface erases the
current configuration from the screen and its associated data structures, then the
topology is automatically replaced by the new one. Before loading a new configu-
ration, please make sure that your work is saved first. When clicking on the shortcut
icon or selecting the option Open in the File menu, a file selection window appears
on the screen as presented in Figure 15.

Lookim: |z Examples - =i

1 Cvs test1S
nfznet test19
rifznet? tests
test] bestd
[test1 5 testd
testl B

test] ¥

File name: Itest'l] Open I
Files of type: IAII Files [*.%] d Cancel |

FIGURE 15. Open File Dialog Box

The organization of this dialog box depends on the system you are running. It is
recommended to refer to the specific documentation provided with your operating
system in order to use the selection box. Browse your hard drive or eventually the
network in order to find the MERLIN configuration file you want to load, and
select it. When opening a file, the interface will check if it is a valid file then it will
display the new topology and its information on the screen. The MERLIN archive
provides some example of files that can be loaded in the interface. These files are

National Institute of Standards and Technology 61

Graphical User Interface

located in the'Examples” directory of the GUI source archive. Feel free to load
them and modify them in order to familiarize yourself with the interface.

Topology information panel

The topology information panel has been divided in two similar parts in order for
the user to compare different aspects of the configuration at the same time. Each
part is divided in several thumbnail panels as seen in Figure 8 on page 55. This sec-
tion details the different panels and the meaning of the parameter found in it.

Non Convert Node Thumbnail Panel

The non convert node thumbnail panel corresponds to the cross connect with no
convertion present and selected in the topology. it is composed of two parts as
described in the Figure 16. The top part is to manage the table and the deletion of
nodes inside it. The bottom part is the list containing the information of the compo-
nents. Use the scroll bars to retrieve extra information and browse the list.

rCumrerl Nodes rNun Comvert Nodes rLinks rCunnectiuns |/Rnutes rnlgurithms |

| ClearTable || DeleteNode(s) |
Marme | BER__ | Delay | Jitter | Bandwidth [OpTvpe | Mod
Corvl 0.0 0.05 0.035 155.0 MORMAL |[NOT_U
Comy2 0.0 0.05 0.035 155.0 MORMAL |[MOT_U
ComT 0.0 0.05 0.035 155.0 MORMAL |[MOT_U
Convé 0.0 0.05 0.035 155.0 MORMAL |[MOT_U

1B

FIGURE 16. Cross-Connect Non Convert Thumbnail Panel

The different fields composing the list of cross connect are editable. Please refer to
the Getting/Setting informatiosection in order to edit the information concerning
the nodes inside the thumbnail panels.

62

National Institute of Standards and Technology

Topology information panel

Each cross-connect has the same set of parameters that is described here:

MHame

oyl

BER
0.4

Demi

0.5

Jitter

0.0

Bandwidth

1545.0

| Oéﬁﬁe

NORM.. ¥ |
NORMAL
PROTECTION

Mode

USED v |

USED
HOT_USED

| Btatus

WORK.. w |

WORKING

FAILED

The name of the node. Please note that this name is linked to
the link and connection requests name. Once set when creat-
ing a new node, this name can not be changed without delet-
ing the node and create a new one.

Bit Error Rate of the node.
Delay added by the node.
Jitter introduced by the node.

Bandwidth of the node.

The type of operation of the node. Normal is for a common
utilization. Protection mean that the component is used for
protection only. This is mostly used in restoration algo-
rithms when a fault has occurred in the network.

The mode indicates if the node is in use or not. Usually this
parameter is automatically set by MERLIN when a route is
using the node and some optical switching is required.

The status of the node is mostly used to study reconfigura-
tion algorithms. Working is the normal state, if the node is
set to failed, all the lambdas inside are also failed, meaning
no assignment of wavelength can be done, and restoration
algorithm need to use the protection components.

Convert Node Thumbnail Panel

The Convert thumbnail panel is similar to the non convert node thumbnail panel. It
contains information on the selected cross-connect convert nodes. Please refer tc

the Non Convert Node Thumbnail Parssction above to retrieve the fields. Con-

vert nodes need to have a matrix of convertion that has not been implemented yet.

National Institute of Standards and Technology 63

Graphical User Interface

Link Thumbnail Panel

The link thumbnail panel is composed of two parts as described in Figure 17. The
top part is to manage the table and the deletion of links and the bottom part is the
list containing the link information. Use the scroll bars to retrieve extra information
on the components and browse the list.

fConvert Hodes rNon Convert Nodes rLinks rConnections rRuutes |

| ClearTable || DeleteLinkis) |

Mame | Source | Destination | Distance | Amplifiers [Reqensratorg FikerR |
CAT_WA CAl WA 1.0 1 1 1
WA_CAT A oAl 1.0 1 1 1
Win_CAZ Wi, CAZ 1.0 1 1 1
CA2_WA CAZ WA 1.0 1 1 1
WiA_IL Wi, IL 1.0 1 1 1
IL_WWA IL WA 1.0 1 1 1
UT_Co uT co 1.0 1 1 1
co_uT co uT 1.0 1 1 1
CAT_UT Al uT 1.0 1 1 1
UT_CA1 uT oAl 1.0 1 1 1
LIT_ml T hl 1.0 1 1 1
MI_LUT hl uT 1.0 1 1 1
CO_ME co ME 1.0 1 1 1
MNE_CO MNE co 1.0 1 1 1 =

] [v]

FIGURE 17. Link Thumbnail Panel

Here is a full description of each field present in the panel:

[mame | The name of a link is automatically determined by the

CAT_WA source and destination node names. When a link is created
between two nodes, it is impossible to change the source
and/or the destination nodes. In order to change the nodes
attached to a link, it is required to delete the link and recre-
ate a new one.

Source
CAT The source node for the link (where the link starts).
Destination
WA The destination node for the link (where the link ends).

National Institute of Standards and Technology

Topology information panel

Distance

1.0

Améliﬂers

1

Reﬁeneratura

1

Fiber Ratio

1

Lamhda Ra...

1

BER
0.4

Delai

0.5

Jitter

0.0

Bandwidth

1545.0

| Oéﬁﬁe

HNORM... v |
NORMAL
PROTECTION

| hode

USED v |

USED
HOT_USED

| Btatus

WORK.. w |

WORKING

FAILED

The fiber length.

Number of amplifiers used along the link.

Number of regenerators along the link.

Number of fibers inside the link.

Number of wavelength per fiber.

Bit Error Rate of the fiber used in the link. It is assumed that
all fibers in the link have the same properties.

Delay added by the link.

Jitter introduced by the link.

Bandwidth of the link.

The Operation Type of this link The link is usually used in
normal operation mode unless its operation mode is set to
protection. This is used in restoration algorithms to recover
from a network failure.

The mode indicates if the link is in use or not. Usually this
parameter is automatically set by MERLIN. A link mode
used means that all the lambdas of the link are used and thus
are not available for wavelength allocation.

The status of the link is mostly used to study the restoration.
Working is the normal state of a link. If the link is set to
failed, all the lambdas inside are also failed, meaning that in
some algorithms, no assignment can be done, and the algo-
rithm needs to use protection components.

National Institute of Standards and Technology 65

Graphical User Interface

Connection Thumbnail Panel

The connection thumbnail contains all the connections requests made on the topol-
ogy. Similar to the Nodes and Link Thumbnails, the top part is to manage the table
and the deletion of connections inside it. The bottom part is the list containing the

information on the connections as it is described in the Figure 18. Use the scroll

bars to retrieve extra information on the components and browse the list.

rCumrert Nodes rNun Convert Nodes rLinks rCunnectiuns rRumes rmgur'rthms |
| Clear Table | | Delete Connection(s) |
Marne [Source | Destination | Distance | BER | Delay |

CAT_MNY_5680 |CA1 MY 20.0 0.4 0.5
Tx_IL_5651 Tx IL 20.0 0.4 0.5
WiA_MJ_5B52 WA MJ 200 0.4 0.5
mMD_CO_5653 |MD [of6] 20.0 0.4 0.5
MNE_CAZ_5654 |ME CAZ 20.0 0.4 0.5
UT_G3A_5B55 uT GA 200 0.4 0.5
IL_MI_5656 IL hl 200 0.4 0.5
CAZ_PA_SHET |CAZ PA 20.0 0.4 0.5
PA_MJ_5E58 PA MJ 20.0 0.4 0.5
NY_MJ_5659 MY MJ 200 0.4 0.5
CAT_MJ_1 CAl M 20.0 0.4 0.5
CO_GA_2 co GA 20.0 0.4 0.5

4

FIGURE 18. Connection Thumbnail Panel

Here is a full description for each fields present in the thumbnail panel. The Name,
Source and Destination are information in order to build the connection. The other
parameters are used by the quality of service algorithms in order to apply some con-

straints in construction of the connection.

Mame The name of a connection is automatically determined by
CA1_WA the source and destination node names plus a unique id.
[source | The source node for the connection request (where the con-
CAT nection starts).

[Destination | 1 he destination node for the connection (where the connec-
Wi tion ends).

Distance The desired distance for this connection (A constraint used

1.0 by QoS algorithms only).

66 National Institute of Standards and Technology

Topology information panel

BER The desired Bit Error Rate along the connection (A con-
0.4 straint used by QoS algorithms only).
[Dpelay | The desired Delay for the connection (A constraint used by
0.5 QoS algorithms only).

Jittar The desired Jitter over the connection (A constraint used by
0.0 QoS algorithms only).

[Bandwidth | The desired bandwidth for the connection (A constraint
155.0 used by QoS algorithms only).

[compute 7 | This flag is set to false if a route and wavelength were

false assigned for the connection request. The same route and
wavelength assignment are used in the case of a reconfigu-
ration algorithm. In case this flag is set to true, a route and
wavelength assignment need to be recomputed.

Routes Thumbnail Panel

The route thumbnail panel is used to display the results of a routing algorithm after
a simulation is completed.

rCumrert Nodes rNun Convert Nodes |/Links rCunnectiuns |/Ruutes |

| All Connections | | all Wavelengths v |

CA1_NY_CA1_NY_5650 |&|Mame: CAZ_PA_CAZ_PA_S657 =]
TA_IL_TH_IL_5651 Distance: 3.0)
WA N WA N BBA2 BER: 0.0

MO_CO_MD_CO_56453 Delay: 31.0 =
ME_CAZ_ME_CAZ_5B5 Mame | Source | Destination [Wavelength
UT_GA_UT_GA_5655 CAZ WA CAZ WA, 2

IL_MI_IL_MI_5656 WA _IL WA, IL 2

CA2_PA_CAZ_PA_GGST
P&_MJ_PA_MNJ_5658
MY _ML_NY_NJ_5659
CAT_MNJ_CAT_NJ_1

CO_GA_CO_GA_2

CAZ_NE_CAZ_ME_3
CAZ_MD_CAZ_MD_4
ot a ml s~ |=|C Display this Route ?

[_] Display all Routes in List ?

IL_PA IL PA 2

FIGURE 19. Routes Thumbnail Panel

National Institute of Standards and Technology 67

Graphical User Interface

Figure 19 on page 67 illustrates the panel and its different parts. There are two list
buttons in the top portion of the panel. The connection button is used to choose to
display the connections in panel and the wavelengths button is used to select which
wavelength to display in the graphical panel. By default, all connections and all
wavelengths are displayed.

Each time the user selects a connection in the list located in the left panel, the infor-
mation specific to the connection is displayed in the right panel. A text box is
present in used to retrieve the information on the connection request, and a list of
the result parameters is also present. The fields are as follows.

Mame

CAT_WWA The name of the connection request.

Source

CAT The source node for the connection request.

Cestination

YA, The destination node for the connection.

| Wavelength

0 The wavelength assigned along the route.

When the check bo¥Display this route?” is checked, the current route is dis-
played in the graphical panel over the topology, while checkingDisplay all
Routes in List?"check box will display all the routes present in the connection list.
Clicking once again on one of the check boxes will remove the drawing of the

route(s) from the graphical display.

anconnections =| BY using the button located at the top left corner of the

thumbnail panel, it is possible to select one or several con-
nection to study. This option will affect the list of connec-
tion displayed in the left part of the thumbnail.

anwavelengths v | Select a specific lambda or display all of them by clicking

on the button located on the top right corner of the thumb-
nail panel. This option will also affect the graphical display
panel for the routes displayed on the screen.

National Institute of Standards and Technology

Topology information panel

Algorithms Thumbnail Panel

The algorithm panel is divided in several categories of algorithms, as shown in
Figure 20.

Convert Hodes |/NIJI’I Convert Nodes |/Links rCunnectiuns rRuutes rnlgurithms |

ROUTING
|¥| Compute 7

VWAVELENGTH
[v] Compute ?

Algorithm: shortest_path
Average Hops : 2.533333
Used Wavelength : 0.000000
Throughput : 14.000000
Utilization : 0.000000

Algorithrm: first_fit

Average Hops @ 2.533333
Used Wavelenagth : 3.000000
Throughput : 15.000000

w | (Utilization : 0.904762

shortest_path - || first_it
RECONFIGURATION Qos
|_| Compute 7 [C] Compute ?

1]

FIGURE 20. Algorithm Thumbnail Panel

The category’s title is written in blue at the top of each panel and a check box is
used in order to enable running the algorithm when the simulation is launched.
When the box is checked, the algorithm selected in the list at the bottom part of the
algorithm panel will be applied to the topology. It is possible to combine several
algorithms for example a Routing and a Wavelength assignment algorithm. When
sending a simulation request to the server, the algorithms will be launched one by
one in the order of the categories. That is the Routing algorithm will be launched
first followed by the Wavelength Assignment algorithm followed by the reconfigu-
ration category. A text box displays the performance results of each algorithm after
simulation is complete. If this text information box is empty, the performances have
not been calculated yet or the algorithm has not been selected. The list of algo-
rithms at the bottom of the algorithm panel includes all the algorithms available in
the category. Choose the one you want to apply before sending the simulation
request to MERLIN. In order to save the algorithms performance results, use the

Export option (Se&xport Performancef theSaving A Configuration Filsection
of this chapter).

National Institute of Standards and Technology 69

Graphical User Interface

Customizing The Document Display

Customizing the display can be an efficient way to study part of a topology, com-
pare the results obtained from simulation, use the different components and adjust
the size of the different panels in order to have a clear view of the parameters.

Scroll Bars

Scroll bars in information panels allow the user to browse
1 [E] |» : : : :

the different lists of parameters in the thumbnail panels. In

the graphical panel, scroll bars adjust the current display of

the topology. This is useful when focusing on a smaller por-

tion of a big topology.

= Use the zoom icons in order to study a specific part of a
PP : .
2 [T topology, and add details to the current display. The wave-
length assignment can only be viewed in some zoom level.
When the zoom level is at its minimum, only the routing can
be seen at the lowest zoom level.

The split panels allow the user to resize the different parts
displayed on the screen. Use it to resize the graphical panel
in order to minimize it or maximize it when studying some
parameters or drawing a topology. In the information panel
it is also possible to remove one of the two thumbnail panels
by clicking on the arrows of the split bar.

List Management

Delay Jitter

70 0.0

[o Drag and drop the different columns of the lists to place

i w nearby two parameters that you want to study more thor-
: oughly.

National Institute of Standards and Technology

Saving A Configuration File

Saving A Configuration File

Saving a topology

Saving a configuration file can be done using the shortcut tool bar icon or the menu
File>Save When clicking on the shortcut icon or selecting the option Save in the
File menu, a file selection window appears on the screen as presented in Figure 21.

Save a File__.
sovers [Ewroe EEEE
G test] g
nfsriet testld
nfznet2 test2
test testd
test15 teshd
. st 16
testl?

Filz name: ItE$t1 B Save I

Save az lupe: I.L\II Files [*.%]

j Cancel |

FIGURE 21. Save File Dialog Box

The organization of this dialog box can differ depending on the system you are run-
ning. It is recommended to refer to the specific documentation provided with your
operating system in order to use the selection box. Browse your hard drive or even-
tually the network in order to locate the directory in which you want to save your
configuration file, and pick one file (or give a new name to the file). When selecting
an existing file inside a directory, the system will prompt you for an overwrite con-
firmation. Acknowledge the message if you want to replace an existing configura-
tion or Cancel it if you want to choose another name for your MERLIN file.

Saving a configuration file will save the entire topology description with names and
node characteristics, links, some GUI extra information, the connection requests,
the algorithms in use, and the routes already computed. However since this file is
destined to be the input file for a simulation, it will not include the performance

National Institute of Standards and Technology 71

Graphical User Interface

results of the algorithms. In order to retrieve the information on the performance
results, it is necessary to export them (Segort performancgs

Export Performances

The export performances feature provides a way to save the simulation results and
use them in external applications like other simulators or analyzing scripts. When
exporting algorithm performances, you will be prompt with a window similar to the
one for saving a configuration file. Please refer to Figure 21 on page 71 and the
Saving A Configuration Filsection of this chapter in order to use the saving dialog
box.

Exporting the performances will save the entire topology description with names

node characteristics, links, some GUI extra information, the connection requests,
the algorithms in use, and the routes already computed. In addition, since this file is
destined to be the output file of a simulation, it will include the performance results

of the algorithms.

Troubleshooting

This section is destined to give the user some tips in order to solve some of the most
common problems that can come up while using the GUI.

The interface hang when loading a configuration

When trying to load a topology containing too much elements in the combo box
(lists of the thumbnail panels), typically a huge number of connections (>300) the
graphical interface will hang for a lack of memory. This is due to a problem in the
Java Swing Package that can not manage more than a certain amount of elements in
the lists. To solve the problem, try to reduce the number of connections or split your
network in several part to reduce the number of information to manage.

No algorithms are displayed or can be selected

This may be due to various problems.

72

National Institute of Standards and Technology

Troubleshooting

MERLIN Server is not running

If the MERLIN server can not be reached for any reason (i.e.: the server is not run-

ning, or the network is down), it is possible to launch the interface and work under

it in order to create a topology and connection requests. However it will not be pos-

sible to simulate any algorithms and performance parameters. When the server car
not be reached, a warning message is displayed in the current Unix Shell or MS-
DOS prompt, and no algorithm is displayed (or can be chosen) in the algorithms

menu or panel.

The interface displays a warning concerning the sockets

You must be on the same local network in order for the interface to reach the server.
The interface is not built to support Firewall connections, and if you are behind
such a gateway and try to access a distant MERLIN server, the interface will not be
able to reach it.

The interface does not display the results

After launching a simulation and waiting for some time, if the interface does not
display any results. this may means that the connection between the interface anc
MERLIN is broken. Check with your MERLIN server administrator in order to
launch the daemon again or check the network connection.

National Institute of Standards and Technology 73

Graphical User Interface

74

National Institute of Standards and Technology

Part 2: Programmers Guide

CHAPTER 5 Architecture Overview

This Chapter is dedicated to the internal architecture of MERLIN. The programmer
will find here a detailed description of the simulator and how it works.

The Core represents the heart of MERLIN. It is an independant program running
on a distant (or local) computer, that dispatches the requests to the different parts of
the simulator.

The Plug-in represents an interface module to MERLIN and allows for easy
access and extension.

The Algorithm is an essential part in the simulation tool.There are four categories
of algorithms to perform routing, wavelength assignment, reconfiguration and QoS
support.

The Communication APl describes the format of the messages exchanged
between the various components during a simulation.

National Institute of Standards and Technology 77

Architecture Overview

Core

The core of MERLIN is a daemon running in the background and waiting for user’s
requests. Given an input as a script file that describes the topology, the routes, the
Qos parameters and the algorithms to be used, the core builds its own data repre-
sentation of the network. Then, the core dispatches the topology to the requested
algorithms. After the algorithm complets its computation, the core translates its
internal structure to a user friendly representation and send the results back to the
user.

MERLIN Core

IFlr_Jgthoa[%rge\;]ers | Component 1'—’| Componentzt—’l Component 3| ;?:rtgrfeters
Nodes [TOPOLOGY]
Links Wavelengths
[ROUTE] L{ Parameters| _)1 Parametersl _){ Parameters| assigned
Source [ROUTE]
Destination Complete route
[QOS] | Source | |_’| Destination | | [QOS]
Predefined Measured
parameters -> 4 -’ parameters
[ACTION] | © [~~~ 777 77777777 v “““““““““““““
Algorithms used [PERFORMANC
Core of the Simulator E]
| Parameter 1| | Parameter2| | Parameter3|
A 4 A 4 A 4
Routing Wavelength Reconfiguration
algorithm class assignment algorithm class
algorithm class

Plug-in

A plug-in is an interface module that allows easy access to MERLIN. It is a stand-
alone application and can be almost anything that communicates with the core in
MERLIN’s language format. A plug-in acts like a client in MERLIN's client/server
architecture. Its functionnality is to send a request to the simulator and collect the
result for the user. The interface between the plug-in and the core has been strictly

78

National Institute of Standards and Technology

Algorithm

defined and a full description of the language format is given irCtrapter 3:
MERLIN’s grammar

Algorithm

An algorithm is a special kind of plug-in that communicates with MERLIN’s core.
The main differences between an algorithm and a plug-in lies in the message
exchange : the algorithm uses MERLIN’s internal structures while a plug-in uses
the script file representation. Another difference is that an algorithm is generally
called by the core and not directly by the user.

Communication API

Whenever a communication is needed between a plug-in and the core, or the core
and an algorithm, a communication pipe is opened. Then the messages are trans
fered both ways througth a local or remote port depending on where the different
applications are running.

Messages scheduler

A

: i

i Communication port i
{

i 1
i

Local or remote actess]

|

1

1

1

|

1

|

1

i Messages

i Communication port
i [MERLIN Messageschedulef

MERLIN

National Institute of Standards and Technology 79

Architecture Overview

The communication between all the entities composing MERLIN is conducted via a
network interface using UNIX sockets. The packets generated by MERLIN have a
specific format that is described here. It is not really important to understand this
simple format since a template communication API is included in the package to
help in building new plug-ins or algorithms.

Size of the MERLIN
packet command Data

FIGURE 22.

The real advantage of a such interface is to make MERLIN plug-ins and algorithms
language independent. As long as the language used supports the sockets communi-
cation techniques, and if the MERLIN API is used, the user is free to develop his/
her own internal structures and functions, and combine them in any way he/she
choose.

80

National Institute of Standards and Technology

CHAPTER 6

Component Hierarchy

Introduction

MERLIN is written in C/C++, using a framework of classes especially designed to
simulate WDM networks. The document of reference is the HTML documentation
provided with the MERLIN archive. When uncompressing the archive, one can
find the source files stored in tlsec directory. Thesrc directory contains the fol-
lowing directories :

componentcontains the classes representing WDM components : links cross-
connect, wavelength,etc..

math contains the basic type of data used in MERLIN.

merlin contains the code source of the MERLIN server and some tightly bound
to the MERLIN internals.

parser contains the code for the MERLIN file parser and some classes tightly
bound to the parser.

tool contains some useful classes like list, array, matrix, vector.

network contains classes used to manage the communication between the dif-
ferent entitties of MERLIN (server, plug-in, algorithms).

The best way to have an overview of the classes available is to look at the HTML
documentation.

National Institute of Standards and Technology 81

Component Hierarchy

Hierarchy

Here is a description of hte classe of each category.

Component

The inheritance mechanism has been used only for the design afrtipwnent
classes. The framework provide many level of inheritance in order to ease the
development of futur components.

e Component
this is an abstract class from that every other component is derived.
Int cid: the id of this component.
Byte state_masistatus,mode and operation type mask.
char* cname name of the component.

¢ Connection
this class represents a source-destination pair between two nodes.
Node* src source node.
Node* destdestination node.
Int cid: connection id.
char* cname connection name.
Float distancelength of the connection.
Float ber. bit error rate.
Float delay delay for this connection.
Float jitter: jitter requested by this connection.
Float bw bandwidth requested for this connection.
Int src_id id of the source node.
Int dest_id id of the destination node.

* Lambda
this class represents a wavelength on a given link.
Int lid: id of this Lambda.
Byte state_masistate mask of this Lambda.

e Link
this class represents a link between two nodes.
Float distancephysical distance of this link.
Int nb_amplifier number of amplifiers contained along the link.

82

National Institute of Standards and Technology

Hierarchy

Int nb_regeneratarnumber of regenerators contained along the link.
Int fiber_ratio: number of fibers in this link.

Int lambda_ratio number of wavelengths per fiber.
Float ber. bit error rate.

Float delay delay introduced by this link.

Float jitter: jitter introduced by this link.

Float bw: bit rate available on this link.

Node* node_indestination node of the link.

Node* node_outsource node of the link.
lambda_list list of the wavelengths used in this link.
Int node_in_idid of the destination node.

Int node_out_idid of the source node.

Node

this is an abstract class that every cross connect is derived from.
Float m_ber bit error rate.

Float m_delaydelay introduced by this node.

Float m_jitter. jitter introduced by this node.

Float m_bw bandwidth of this node.

List<Link> m_list_link_in list of the links coming in the node.
List<Link> m_list_link_out list of the links coming out the node.

Oxc
this is an abstract class that is a generic representation for a cross connect.

OxcConvert
this class represents a cross-connect that can do wavelength conversion.

OxcNonConvert
this class represents a cross-connect that can not do wavelength conversion.

Route

this class represents the ligthpath established for a given connection request.
Int rid: the route id.

char* rname name of the lightpath.

Float distancelength of the lightpath.

Float ber. bit error rate of the lightpath.

Float delay delay of this ligthpath.

Float jitter: jitter of this ligthpath.

Float bw. bit rate of this lightpath.

Int nb_amplifier number of amplifiers on this lightpath.

National Institute of Standards and Technology 83

Component Hierarchy

Int nb_regeneratarnumber of regenerators on this lightpath.
Connection* connectiarthe connection attached to this lightpath.
List<Node>* m_node_listlist of the nodes along the lightpath.

Int connection_idid of the connection attached to this lightpath.
List<Int>* node_id_list list of the id of the nodes along the ligthpath.

* Wave
this class represents the wavelengths used for a given route.
Route*route the route attached to this wave.
List<WIAssigned>* wavelength_lislist of the wavelength used along this
ligthpath.
Int route_id id of the route attached to this group of wavelengths.

* WIAssigned
this class represents a set of wavelengths used for one route only.
Link* link: the link where the wavelengths are assigned.
List<Lambda>* lambda_assigned_lighe list of the wavelengths assigned on
this link.
Int link_id: the id of the link attached to this set of wavelengths.

The Figure 23 on page 85 show the hierarchy of the Component class.

National Institute of Standards and Technology

Hierarchy

Component

cid
state_mask
cname

Link Node
distance node_in in_link_list m ber
nb_amplifier I < m_delay
nb_regenerator)) m_jitter
fiber ratio node_out out_link_list m_bw
lambda_ratio nd < m_list_link_in
ber m_list_link_out
delay
jitter
node_in_id A
node_out_id
lambda_list

Oxc

OxcConvert

FIGURE 23. hierarchy

OxcNonConvert

National Institute of Standards and Technology

85

Component Hierarchy

Math

Each class of thmathcategory is able to transform itself in a common representa-
tion in order to avoid architecture-dependent conflict between big-indian and small
indian representation systems.

Boolean

a class that represents a boolean.

Byte

a class that represents a byte. Bytes are heavily used in the communication
between the server and the algorithm.

Double

a class that represents a double.

Float

a class that represents a float.

Int
a class that represents an integer.

Merlin

Parameter

this class represents a parameter used in the communication between the dae-
mon, the plug-ins and the algorithms.

Parameter_t typethe type of thelataattribute of this parameter.

Int pid: the id of this parameter.

void* data the Parameter's data.

ParameterList
this class represents a list of instances of Parameter.

Network

Server

this class is used in the daemon. There is only one instance of this class.
Socket* serverthe server’s socket.

Socket* clientthe list of Clients connected. Only ONE is connected in this
implementation.

Socket* algorithmthe algorithm currently running.

boolean is_runningboolean flag that indicates if the server is running or not.

Client
this class is used in every client (plug-in or algorithm) that has to connect to the

86

National Institute of Standards and Technology

Hierarchy

server.
Socket* clientthe socket connected to the server.

Socket
this class embedded a subset of the socket API.
int sid the system id of this Socket.

Parser

Algorithm

this class represents an algorithm. It is used in every algorithm launched by the
MERLIN daemon.

char* m_machinethe name of the algorithm's machine.

char* m_path the full path to reach the algorithm.

Parameter* m_parametethe input parameter (only available after the parsing
of the input file).

The following attributes are the parameters of the algorithm. They are detailled
in “Analyzing The Results” on page 27:

Float m_average_hops

Float m_used_wavelengths

Float m_throughput

Float m_utilization

Float m_blocking_probability

Float m_wavelength_reusability

Float m_computation_complexity

Float m_cost

Float m_wavelength_availability

Int m_typethe type of the algorithm.

List<Connection>* ml_connectiarist of the connection requests.

Topology

this class represents a topology. It contains a list of the nodes, a list of the links,
a list of the connections requests and on the ligthpath currently established.
Most of the attributes of a Topology object are set after the parsing of the input
file or created while calling the copy constructor.

List<OxcConvert>* m_oxc_convert_lidist of the cross-connect that can do
wavelength conversion.

List<OxcNonConvert>* m_oxc_non_convert_likst of the cross-connect that
can not do wavelength conversion.

List<Link>* m_link_list: list of the links of the topology.

List<Connection>* m_connection_lislist of the connection requests.

National Institute of Standards and Technology 87

Component Hierarchy

List<Route>* m_route_listlist of the established lightpaths.
List<Wave>* m_wave_listlist of the wavelengths used by the lightpaths.
List<Algorithm>* m_algo_list list of the algorithms to start.

Tool

Array

this class represents an array. It is mainly used to send the byte representation of
the objects through the socket interface.

Int m_sizesize of the array.

classT* m_itemspointer on the first element of the array.

Int m_currentindex of the current element of the array.

List

this class represents a list of pointers on objects.
Element<classT>* headoointer on the head of the list.
Element<classT>* currentpointer on the current element of the list.
Int elementsnumber of elements in the list

Matrix

this class represents a matrix. It inherits from the Vector class.
Tool

this class contains useful functions to be used in the algorithms.

TopologyMatrix.
this class is another representation of the topology. It can be more useful in
some algorithm.

Vector
this class represents a vector. It is the parent class of the class Matrix.

88

National Institute of Standards and Technology

CHAPTER 7

The MERLIN Grammar

The simplest way to communicate with the core of MERLIN is to build a file and
send it to MERLIN. However, this file has to obey a specific syntax. This section
intends to provide a description of the syntax used to write valid MERLIN files and
is broken into two sections:

What Is A Grammar? . This section gives on the use and the meaning of a gram-
mar.

Description of the MERLIN Grammar provides a complete description of the
grammar used.

If you feel comfortable with grammar specifications, you can go directly to the
section that describes MERLIN’s grammar including the list of tokens used in
MERLIN and the grammar rules.

National Institute of Standards and Technology 89

The MERLIN Grammar

What Is A Grammar?

A grammar is a set glilesthat a file syntax must obey. These rules are a combina-
tion of tokens that are compared to tags present in the input file. The comparison
(also called parsing) determines whether or not the input file respect entirely the
correct syntax. This operation is performed because the application usually expects
a certain set of parameters placed in order to build its internal structure with valid
values. An example for a rule declaration is as follows:

RULE
TOKEN1
| TOKEN2

This rule is applied in the definition of a component’s parameter, MODE_VALUE:

MODE_VALUE
USED
| NOT_USED

This rule means that the mode of a component can be EigEeDor NOT_USED

(The symbol "|" is a logical symbol used to define different possible values for a
rule). Both USED and NOT_USED are tokens, meaning that in the file, we should

find the word "USED" or "NOT_USED" at the correct place. A token can also be a

rule. Thus rules include a combination of tokens and other rules. For example, the
following rule specifies how to declare a link:

LINK_DECLARATION_EXPLICIT
LINK ID ID ID LINK_DEF
LINK_DEF

OPEN

DISTANCE ID END
NB_AMPLIFIER ID END
NB_REGENERATOR ID END
FIBER_RATIO ID END
LAMBDA_RATIO ID END
BER ID END

DELAY ID END

JITTER ID END

BW ID END

OP_TYPE OP_TYPE_VALUE END
MODE MODE_VALUE END
STATUS STATUS_VALUE END

National Institute of Standards and Technology

What Is A Grammar?

CLOSE

LINK and ID are tokens but LINK_DEF is a rule. The rule LINK_DEF is defined
with tokens and three rules, which are OP_TYPE_VALUE, MODE_VALUE, and
STATUS_VALUE.

Each final token can be represented in the file by the word itself or an alias to it.
Thus, each token of the grammar can have a substitute that is defined in an alias
table. For example, the previous DEFAULT_LINK_DEF rule can be described in
the input file as follows:

{
DISTANCE 10;
NB_AMPLIFIER 10;
NB_REGENERATOR 20 ;
FIBER_RATIO 3;
LAMBDA_RATIO 5;
BER 0.01;
DELAY 0.03;
JITTER 0.02;
BW 155
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
}

Figure 8: Example of the Link's file representation in MERLIN

Here for simplicity, the symbol used to represent the token DISTANCE in the
grammar is the word "DISTANCE", but the one used to represent the token END is
"". The tokens must be separated either by a space or by an end of line. The
description of the grammar should then contain the list of all the substitutes to the
tokens and the list of all the rules.

For more information concerning the construction of grammars and more detailed
examples, please refer to the GNU web site of Bison (the GNU parser) at http://
www.gnu.org/manual/bison/index.html.

National Institute of Standards and Technology 91

http://www.gnu.org/manual/bison/index.html

The MERLIN Grammar

Description of the MERLIN Grammar

This section presents the full description of the MERLIN grammar. The list of
tokens is useful in order to know the substitutes that must be present in the script
file.

Token list

FIGURE 24. Tokens’ substitutes

Token Substitute

ACTION ACTION

ADD_CONNECTION ADD_CONNECTION

ALGO_LOCATION ALGO_LOCATION

ASSIGN_WL ASSIGN_WL

CLOSE }

CONNECTION CONNECTION

CONNECTION_BLOC_T

AG [CONNECTION_BLOC]

CONNECTION_MAX CONNECTION_MAX

CREATE_ROUTE CREATE_ROUTE

BER BER

BW BW

DEFAULT DEFAULT

DELAY DELAY

DEST DEST

DISTANCE DISTANCE

END ;

FAILED FAILED

FIBER_RATIO FIBER_RATIO

GUI GUI
['I"™:"\"A-Za-z0-9_A.-

ID <)+

National Institute of Standards and Technology

http://www.gnu.org/manual/bison/index.html

Description of the MERLIN Grammar

FIGURE 24. Tokens' substitutes

Token

Substitute

JITTER JITTER
LAMBDA_LIST LAMBDA_LIST
LAMBDA_RATIO LAMBDA_RATIO
LAMBDAS LAMBDAS
LINK LINK
LINK_BLOC_TAG [LINK_BLOC]
LINK_FAILURE LINK_FAILURE

MEAN_CONNECTION_S
ET

MEAN_CONNECTION_S
ET

MODE MODE
NB_AMPLIFIER NB_AMPLIFIER
NB_REGENERATOR NB_REGENERATOR
NODE_BLOC_TAG [NODE_BLOC]

NODE_FAILURE

NODE_FAILURE

NODE_NAME_LIST

NODE_NAME_LIST

NORMAL NORMAL
NOT_USED NOT_USED
OPEN {
OP_TYPE OP_TYPE

OXC_CONVERT

OXC_CONVERT

OXC_NON_CONVERT

OXC_NON_CONVERT

PROTECTION

PROTECTION

RECONFIGURATION

RECONFIGURATION

REM_CONNECTION

REM_CONNECTION

ROUTE ROUTE
ROUTE_BLOC_TAG [ROUTE_BLOC]
ROUTE_ID ROUTE_ID
START START

STATE STATE

National Institute of Standards and Technology

93

The MERLIN Grammar

FIGURE 24. Tokens’ substitutes

Token Substitute
STATUS STATUS
SWITCH_TABLE SWITCH_TABLE
TOPOLOGY TOPOLOGY
USED USED
WAVE WAVE
WAVE_BLOC_TAG [WAVE_BLOC]

WL_ASSIGNED_LIST

WL_ASSIGNED_LIST

WORKING

WORKING

Please note that the substitute forlfbeéoken is a regular expression.

Rules list
S.

TOPOLOGY_BLOC ACTION_BLOC GUI_BLOC

TOPOLOGY_BLOC:
TOPOLOGY OPEN

NODE_BLOC_TAG OPEN NODE_BLOC_LIST CLOSE
LINK_BLOC_TAG OPEN LINK_BLOC_LIST CLOSE

CONNECTION_BLOC_TAG OPEN CONNECTION_BLOC_LIST CLOSE

ROUTE_BLOC_TAG OPEN ROUTE_BLOC_LIST CLOSE
WAVE_BLOC_TAG OPEN WAVE_BLOC_LIST CLOSE

CLOSE

ALGO_LOCATION_DEF:
ALGO_LOCATION
ID
ID
END

NODE_BLOC_LIST:
END

| NODE_BLOC NODE_BLOC_LIST

| NODE_BLOC

94

National Institute of Standards and Technology

Description of the MERLIN Grammar

LINK_BLOC_LIST:
END
| LINK_BLOC LINK_BLOC_LIST
| LINK_BLOC

CONNECTION_BLOC_LIST:
END
| CONNECTION_BLOC CONNECTION_BLOC_LIST
| CONNECTION_BLOC

CONNECTION_SHORT_BLOC_LIST:
END
| CONNECTION_SHORT_BLOC CONNECTION_SHORT_BLOC_LIST
| CONNECTION_SHORT_BLOC

ROUTE_BLOC_LIST:
END
| ROUTE_BLOC ROUTE_BLOC_LIST
| ROUTE_BLOC

WAVE_BLOC_LIST:
END
| WAVE_BLOC WAVE_BLOC_LIST
| WAVE_BLOC

NODE_BLOC:
DEFAULT_OXC_CONVERT_DECLARATION
| DEFAULT_OXC_NON_CONVERT_DECLARATION
| OXC_CONVERT_DECLARATION
| OXC_NON_CONVERT_DECLARATION

LINK_BLOC:
DEFAULT_LINK_DECLARATION
| LINK_DECLARATION

DEFAULT_LINK_DECLARATION:
DEFAULT LINK LINK_DEF

DEFAULT_OXC_CONVERT_DECLARATION:
DEFAULT OXC_CONVERT OXC_CONVERT_BLOC

National Institute of Standards and Technology

95

The MERLIN Grammar

DEFAULT_OXC_NON_CONVERT_DECLARATION:
DEFAULT OXC_NON_CONVERT OXC_NON_CONVERT_BLOC

LINK_DECLARATION:
LINK_DECLARATION_EXPLICIT
| LINK_DECLARATION_IMPLICIT

LINK_DECLARATION_EXPLICIT:
LINK ID ID ID LINK_DEF

LINK_DECLARATION_IMPLICIT:
LINK ID ID ID END

OXC_CONVERT_DECLARATION:
OXC_CONVERT_DECLARATION_EXPLICIT
| OXC_CONVERT_DECLARATION_IMPLICIT

OXC_CONVERT_DECLARATION_IMPLICIT:
OXC_CONVERT ID END

OXC_CONVERT_DECLARATION_EXPLICIT:
OXC_CONVERT ID OXC_CONVERT_BLOC

OXC_NON_CONVERT_DECLARATION:
OXC_NON_CONVERT_DECLARATION_EXPLICIT
| OXC_NON_CONVERT_DECLARATION_IMPLICIT

OXC_NON_CONVERT_DECLARATION_EXPLICIT:
OXC_NON_CONVERT ID OXC_NON_CONVERT_BLOC

OXC_NON_CONVERT_DECLARATION_IMPLICIT:
OXC_NON_CONVERT ID END

LINK_DEF:
OPEN
DISTANCE ID END
NB_AMPLIFIER ID END
NB_REGENERATOR ID END
FIBER_RATIO ID END
LAMBDA_RATIO ID END

96

National Institute of Standards and Technology

Description of the MERLIN Grammar

BER ID END

DELAY ID END

JITTER ID END

BW ID END

OP_TYPE OP_TYPE_VALUE END
MODE MODE_VALUE END
STATUS STATUS_VALUE END
LAMBDA_LIST_BLOC

CLOSE

LAMBDA_LIST_BLOC:
LAMBDA_LIST OPEN LAMBDA_LIST_DEF CLOSE

LAMBDA_LIST_DEF:
END
| LAMBDA_LIST_ELEMENT LAMBDA_LIST_DEF
| LAMBDA_LIST_ELEMENT

LAMBDA_LIST_ELEMENT:
ID OP_TYPE_VALUE MODE_VALUE STATUS_VALUE END

OXC_CONVERT_BLOC:
OPEN
BER ID END
DELAY ID END
JITTER ID END
BW ID END
OP_TYPE OP_TYPE_VALUE END
MODE MODE_VALUE END
STATUS STATUS_VALUE END
SWITCH_TABLE_DEF
CLOSE

OXC_NON_CONVERT_BLOC:
OPEN
BER ID END
DELAY ID END
JITTER ID END
BW ID END
OP_TYPE OP_TYPE_VALUE END
MODE MODE_VALUE END

National Institute of Standards and Technology 97

The MERLIN Grammar

STATUS STATUS_VALUE END
SWITCH_TABLE_DEF
CLOSE

SWITCH_TABLE_DEF:
SWITCH_TABLE OPEN SWITCH_ENTRY_LIST CLOSE

SWITCH_ENTRY_LIST:
SWITCH_ENTRY SWITCH_ENTRY_LIST
| SWITCH_ENTRY

SWITCH_ENTRY
ID ID ID ID END
| END

CONNECTION_BLOC:
CONNECTION ID OPEN
START ID END
DEST ID END
DISTANCE ID END
BER ID END
DELAY ID END
JITTER ID END
BW ID END
CLOSE

CONNECTION_SHORT_BLOC
CONNECTION ID END

OP_TYPE_VALUE:
NORMAL
| PROTECTION

MODE_VALUE
USED
| NOT_USED

STATUS_VALUE:
WORKING
| FAILED

98

National Institute of Standards and Technology

Description of the MERLIN Grammar

ROUTE_BLOC:
ROUTE ID OPEN
CONNECTION ID END
DISTANCE ID END
BER ID END
DELAY ID END
JITTER ID END
BW ID END
NODE_NAME_LIST NODE_NAME_LIST_DEF
CLOSE

NODE_NAME_LIST_DEF:
ID NODE_NAME_LIST_DEF
| END

WAVE_BLOC:
WAVE OPEN WAVE_DEF CLOSE

WAVE_DEF:
ROUTE ID END WL_ASSIGNED_LIST
OPEN WL_ASSIGNED_LIST_DEF CLOSE

WL_ASSIGNED_LIST_DEF:
WAVE_LAMBDA_LIST_BLOC WL_ASSIGNED_LIST_DEF
| WAVE_LAMBDA_LIST BLOC

WAVE_LAMBDA_LIST_BLOC:
OPEN LINK ID END LAMBDA WAVE_LAMBDA_LIST CLOSE

WAVE_LAMBDA_LIST:
ID WAVE_LAMBDA_LIST
| END

ACTION_BLOC:
ACTION OPEN ACTION_LIST CLOSE

ACTION_LIST:
ACTION_DEF ACTION_LIST
| ACTION_DEF

ACTION_DEF:

National Institute of Standards and Technology

99

The MERLIN Grammar

END

| CREATE_ROUTE_ACTION

| ASSIGN_WL_ACTION

| RECONFIGURATION_ACTION
| ADD_CONNECTION_ACTION
| REM_CONNECTION_ACTION
| LINK_FAILURE_ACTION

| NODE_FAILURE_ACTION

CREATE_ROUTE_ACTION:
CREATE_ROUTE OPEN ALGO_LOCATION_DEF
CONNECTION_BLOC_LIST CLOSE

ASSIGN_WL_ACTION:
ASSIGN_WL OPEN ALGO_LOCATION_DEF
CONNECTION_SHORT_BLOC_LIST CLOSE

RECONFIGURATION_ACTION:
RECONFIGURATION
OPEN
ALGO_LOCATION_DEF
CONNECTION_BLOC
CONNECTION_MAX ID END
MEAN_CONNECTION_SET ID END
CLOSE

ADD_CONNECTION_ACTION:
ADD_CONNECTION ALGO_LOCATION_DEF OPEN CLOSE

REM_CONNECTION_ACTION:
REM_CONNECTION ALGO_LOCATION_DEF OPEN CLOSE

LINK_FAILURE_ACTION:
LINK_FAILURE ALGO_LOCATION_DEF OPEN CLOSE

NODE_FAILURE_ACTION:
NODE_FAILURE ALGO_LOCATION_DEF OPEN CLOSE

GUI_BLOC:
| GUI OPEN ID_LIST_DEF CLOSE

100 National Institute of Standards and Technology

Description of the MERLIN Grammar

ID_LIST_DEF:
| END
| ID ID ID END ID_LIST_DEF

National Institute of Standards and Technology 101

The MERLIN Grammar

102 National Institute of Standards and Technology

CHAPTER 8 Extending MERLIN

The communication system included in MERLIN allows the programmers to
implement their own algorithms and plug-ins. By thus way, MERLIN can simulate
a large variety of algorithms, and can be interfaced with other network simulators
such as optical lower layer simulators or higher layer simulators such as NS, NISI,
ASM, etc...). The aim of this section is to explain the different structures and mod-
ules to use in order to add a new algorithm/plug-in to MERLIN.

The Plug-in section describes how to create a new plug-in such as an interface to
another simulator.

The Algorithm section explains how to implement your own algorithm and inte-
grate it to MERLIN database.

The Integration To MERLIN section presents the different steps in the integra-
tion of a new module in the MERLIN archive.

The Plug-in

The MERLIN archive includes a simple communication mechanism which takes
care of the data exchange between the algorithm/plug-in and the core. A template

National Institute of Standards and Technology 103

Extending MERLIN

generic Makefile script is also provided in order to compile your application. In
order to implement your own module, you do not have to be familiar with the com-
munication techniques, but it is recommended to have a basic knowledge of the
C,C++ or Java languages programming techniques, and compilation techniques.

In order to speed up the development of a plug-in, a communication API has been
developed in C++. The code of the APl and a template Makefile can be copied from
the src/template/plug-irdirectory of the archive. The communication API call a
specific function namegluginMainthat muste present in your module, and will

be called with the following signature.

void pluginMain (int argc, char **argv);

The first argument is the number in arguments of the command line, and the second
argument represent the command line parameters used in the plug-in. For more
details, please refer to the Client class description in the reference manual available
online.

The communication API of a plug-in will only take care of opening and closing the
communication port (italic letter in the following description). Here is the descrip-
tion in pseudo-code of what the text file plug-in is supposed to do.

e Connect to MERLIN communication port.

e Call the pluginMain function

* Read an input file.

* Send the file to MERLIN.

* Wait for the reply on the communication port.

* If the answer is an error, return the error to the user.

* Else the answer is an acknowledgement message, read the parameters
on the communication port.

e Write the Output file on the disk.
e return from the pluginMain function
e Close the communication port.

104 National Institute of Standards and Technology

The Algorithm

The Algorithm

An algorithm receiving a list of parameters from MERLIN does some computation
before returning an output list of parameters to MERLIN.

Similar to the plug-ins, a communication API for the algorithm has been developed
in C++. The code of the API and a template Makefile can be copied froerahe
template/algorithmdirectory of the archive. The communication API starts the
communication between the algorithm and the core and get the parameters needed
Then it calls a specific function namatfjoMain. This function MUST be present

in your module, and will be called with the following signature.

void algoMain (ParameterList & param_in_list,
ParameterList & param_out_list);

The arguments are respectivly the list of parameters needed as an input for this
algorithm (filled by the communication API), and the output list of parameters for
this algorithm (this must be filled by the algorithm). The output list of parameters
contains the modified topology and associated components, and the performance
parameters of the algorithm. The modified list of parameters must be retrieved by
the communication API in order to end properly the communication process with
MERLIN. You are free to do anything necessary in your algorithm but you won't be
able to communicate with the core until the algorithm completes its execution.
Beside these constraints you are allowed to implement whatever you want in your
algorithm.

We list here the pseudo-code of an algorithm used in MERLIN. The code attempts
to give an idea of the mechanisms used for communicating between the different
elements of the simulator. The communication API (italic in the following descrip-
tion) is a little bit more complex than for a Plug-In.

e Open a communication port.

* Register the algorithm to MERLIN.

* Wait for a command from MERLIN.

* Read the message from the communication port.

* Ifthe command is invalid, return an error to MERLIN.

* [fthe command is valid, read the parameters on the communication port.

e Build the internal structures (topology, route, set algorithms parameters)

National Institute of Standards and Technology 105

Extending MERLIN

* Execute the algoMain function of the algorithm.
* Return the results to MERLIN.
e Close the communication port.

To identify and register your algorithm in MERLIiN's core, you MUST also provide
in your module a reference to a special string thiitasname of the executable file,
result of the compilation process of your algorithm. Please declare at the begining
of your module the following variable:

char * algorithm_id = "[path/l[name_of the_algorithm";

This string MUST NOT contain any special characters that could interfere with the
file system of your computer. It must contain either the full path from the root
directory to the binary file, or the relative path from the directory defined in the
variable MERLINPATH. We recommend the second solution. The path should be
set toalgorithm/algorithm_clas$o match what has already be implemented in the
current version of the simulator.

Integration To MERLIN

We first recommend to place the source files of your new module in a specific
directory, and place it into the corresponding sub-directory of the source tree. See
the description of the sub-directories inside shedirectory of the archive (Partl,
Chapter). Every time that you want to implement an algorithm or a plug-in, you
should take a look at the template Makefile and modify the variables located in the
part that is outside the WARNING statements. You will have eventually to modify
the Object compilation part (at the end of the template Makefile) in order to com-
pile your own modules.

We recommend the use of the template makefile in order to integrate more easily
your own modules to MERLIN. This file is nameédakefile.inand is not (and
should not be) a valid makefile that can be used directly by anyone. After a small
modification in theconfigure script of the archive, the compilation process will
take care of the modifications inside the template. The first step in the integration of
your module to MERLIN is to make the modifications insideNfakefile.infile as
described in the following example (used for the shortest path algorithm).

EXE= shortest_path

106

National Institute of Standards and Technology

Integration To MERLIN

INSTALL_EXE= algorithm/routing
OBJECTS=

Please provide a type for the INSTALL_EXE variable. This will allow MERLIN to
install your executable code in the corresponding categories of algorithms. The
type can be:

¢ routing(Routing Algorithms)

* wavelength(Wavelength Assignment Algorithms)
¢ reconfiguration(Reconfiguration Algorithms)

¢ gos(Quality Of Service Algorithms)

You can then add your own list of modules to the compilation process, by setting
the OBJECTS variable. Then you will have to add the compilation lines for each
module in the Object Section of the template Makefile.

To generate the Makefile associated to the template you have to reonfigaire
script in order to fill in the directories and the compilation variables that match with
your architecture. Then you can go to MERLIN root directory and launch the con-
figure script with the --file option on the file that you want to generate (here the
Makefile):

Example:./configure --file=path_to_my_algorithm/Makefile
Then you can go back to your working directory and compile your algorithm. If
there are no errors you can follow the next step in order to integrate your algorithm

in MERLIN.

Here is a table representing the differents actions that one can perform and ask tc
MERLIN.

IN TOPOLOGY List <Component>
CREATE_ROUTE List <Connection>

OUT | TOPOLOGY List <Component> (modified
ROUTE_CREATED List <Route>

IN TOPOLOGY List <Component>
ASSIGN_WAVELENGTH List <Route>

National Institute of Standards and Technology 107

Extending MERLIN

OUT | TOPOLOGY List <Component> (modified
WAVELENGTH_ASSIGNED List <Wave>
IN TOPOLOGY List <Component>
ADD_CONNECTION List <Connection>
List <Route>
OUT | TOPOLOGY List <Component> (modified
CONNECTION_ADDED List <Route> (new)
List<Route> (modified)
IN TOPOLOGY List <Component>
REMOVE_CONNECTION List <Connection>
List <Route>
OUT | TOPOLOGY List <Component> (modified
CONNECTION_REMOVED List <Route> (removed)
List <Route> (modified)
IN TOPOLOGY List <Component>
FAIL_LINK List <Link>
List <Wave>
List <Routes>
OUT | TOPOLOGY List <Component> (modified
LINK_FAILED List <Wave>
List <Route>
List <Route> (modified)
IN TOPOLOGY List <Component>
FAIL_NODE List <Node>
List <Wave>
List <Route>
OUT | TOPOLOGY List <Component>

108

National Institute of Standards and Technology

Integration To MERLIN

NODE_FAILED

List <Wave>
List <Route>
List <Wave> (modified)
List <Route> (modified)

TOPOLOGY
FAIL_LAMBDA

List <Component>
List <Lambda>
List <Link>

List <Wave>

List <Route>

ouT

TOPOLOGY
LAMBDA_FAILED

List <Component>
List <Link>

List <Wave>

List <Route>

List <Link> (modified)
List <Wave> (modified)
List <Route> (modified)

TOPOLOGY
RECONFIGURATION

List<cComponent>
List<Connection>
NbMaxConnection
MeanNbConnection

ouT

TOPOLOGY
RECONFIGURED

List<Component> (modified
List<Route>
List<Wave>

National Institute of Standards and Technology

109

Extending MERLIN

110 National Institute of Standards and Technology

Appendices

CHAPTER 9

k shortest path

Abstract

The k_shortest_path is a routing algorithm that computes K shortest paths for a
connection request between a node pair. For now, K is fixed to 3, but in the next
version of MERLIN the user will be able to set this number.

Input parameters

Input parameters are :

a description of the current topology that contains :

a list of links,
a list of nodes (cross connect),

a list of existing routes, that the algorithm has to consider in computing new
routes,

a list of connection requests.

National Institute of Standards and Technology 113

k shortest path

Output parameters

. a list of new computed routes.

. a list of all routes currently set in the topology. This includes the previously
existing routes in the given topology and the new computed routes.

Pseudo code

We try to find the K shortest routes betwesurce _nodeanddestination_node
The main loop of the algorithm is recursive. The structure is as follows :

begin

1. Define a set of possible routBsand a set of solutiors

Initially P = {source_nodg S={}

2. Look for all available links from each elementfofind construct a temporary
set of pathg.

for each routdiin Pdo
for each nodg¢ neighbor of the last node Bf do
tmpR=Ri+ | (add the nodgafter the last node &i)
T=T+tmpR
end do
end do

3. Select a minimum cost path from the temporaryTset
selected_patk get_path_of _minimum_cost_fromm)(
P =P + selected_path

4. If selected_patls a solution (i.e. the last nodes#lected_patis
destination_nodethenS= S+ selected_path

5. Go to 2 untilShas K elements.

end

114 National Institute of Standards and Technology

Structures and temporary formats

Structures and temporary formats

The algorithm uses a class called KRoute. Each element of the set P is an instanc
of KRoute. The main characteristics of a KRoute are :

* ml_path:
the path used by KRoute.

* mi_cost:
the cost of ml_path. Each time a node is added to the path, the cost is recom-
puted.

e ml_try:
a list of possible paths constructed as follows: during phase 2 of the algorithm
(see above), each neighbor node of the last node of ml_path is added to
ml_path. The new resulting path is put in ml_try.

e mp_best_kroute
this is the element of ml_try that has the lowest cost.

A KRoute is a possible route for a given connection and is placed in the P set.

Integration in MERLIN

Path: $MERLINPATH/algorithm/routing/k_shortest_path
Category: routing

Restrictions: none

References

The k-shortest path is a common algorithm which has been studied intensivly.
Almost every paper on the k-shortest path describes a basic form of this algorithm.
A good starting point to find informations on operations research algorithms is :
http://mat.gsia.cmu.edu.

National Institute of Standards and Technology 115

k shortest path

116 National Institute of Standards and Technology

CHAPTER 10

Tabu

Abstract

The tabu algorithm is a wavelength allocation algorithm based on the tabu search
paradigm. This algorithm trie to allocate one wavelength for each route. Wave-
length conversion is not considered along a route.

Input parameters

a description of the current topology that includes :

e alist of links
¢ alist of nodes (cross connects)

* alist of existing routes, that the algorithm has to consider in computing new
routes.

National Institute of Standards and Technology 117

Tabu

Output parameters

. a list of new computed routes.
. a list of all routes currently set on the topology.

Pseudo code

The number of neighbors the tabu algorithm look at is cakéghbor_sizeand is
the size of theolution table.

begin
Create a graph derived from the input topology. (This graph is a set of linked verti-
ces. See the part "Structures and temporary formats")

6. Make a random coloring on this graph.

7. Compute the conflicts existing and fill the conflict list whith doubles (vertex,
number of conflicts)

iteration=0
while (size ofconflict list!= 0 and iteration < 1000)
clear theolutions table
for neighbor_sizeéime do
2ap_vertex= pick a vertex in the graph
2bp_color = pick a color
if ((p_vertex.current_colo¥=p_color) AND
p_vertexp_coloris not in thetabu list) AND
p_coloris available op_vertey)
then
compute the number of conflicts resulting of the potential allocation of
p_colorto p_vertex
create a solution wich is the tuple (‘array of the color used by each ver-
tex, nb_conflicts)
put this solution in teelution table
else gotoa
end for
take the best solution from #@ution table
put the best solution in ttadbu list

118

National Institute of Standards and Technology

Structures and temporary formats

update theonflict list
iteration++

end while

end

Structures and temporary formats

In order to allocate a wavelength, we use a graph derived from the input network. In
this graph the nodes are called vertex, and each vertex is associated with a route
There is a link between two vertices if the routes they are associated with have at
least one common link. Allocating a wavelength for the routes of the input network
is equivalent to color the derived graph. The tabu paradigm is used to color the
derived graph.

The algorithm use three structures:

1. The vertex

The attributes of a vertex are :

* mp_route
the route it is associated with.

* mi_color
The wavelength allocated to mp_route.

e ml_link
a list of the links of the route. This is used to achieve two objectives :
1 know what vertices are neighbors, i.e. they have a link in common.
2 know what wavelengths are available along the links of the route.

* ml_neighbor
a list of the vertex’s neighbors. It is used to know if the coloring of the vertex
generates a conflict with its neighbors.

* mb_is_already_allocated
a boolean indicating that this route has already been allocated, so its color need
not to be changed.

2. The tabusol

National Institute of Standards and Technology 119

Tabu

A tabusol represents a move in the tabu algorithm. A tabusol is an entry in the

tabu list. This is basically one of the best choices available, i.e. a choice that gener-
ates the least amount of conflicts.

The attributes of a tabusol are :

topo
an Array which size is equal to the number of routes. Each element of it is a
color associated to a route.

The sol

A sol represents a possible change of color for a vertex.
The attributes of a sol are :

vertex
the vertex whose color can be changed.

color
the new color.

conflicts
number of conflicts resulting from changing the vertex'color to the new color.

ml_vertex_to_add
list of vertices that should be added to the conflict list if the color of the vertex is
changed.

ml_vertex_to_remove
list of vertices that should be removed from the conflict list if the color of the
vertex is changed.

The algorithm use three main lists ;

1

the conflicts list

stores all vertices having the same color as their neighbor’s color.

the tabu list

stores every tabu "move", i.e. every best choice choosen after a given number of
iterations.

the solution table

this is a temporary table where the best solution is picked and put into the tabu
list.

120

National Institute of Standards and Technology

Integration in MERLIN

The size of the tabu list and the solution table is fixed to 10, but it can be set as
variable parameter in order to adapt the algorithm to a given topology and traffic
matrix.

Integration in MERLIN

Path: $MERLINPATH/algorithm/wavelength/tabu

Category: wavelength

Restrictions: this algorithm does a wavelength allocation without wavelength
conversion.

References

For an overview of the tabu search paradigm, see http://www.winforms.phil.tu-
bs.de/winforms/research/tabu/tabu.html

National Institute of Standards and Technology 121

Tabu

122 National Institute of Standards and Technology

CHAPTER 11 First Fit Reconfiguration

Abstract

The first_fit_reconf algorithm is an example of reconfiguration algorithm. It allo-
cates wavelengths to a set of connection requests generated overtime according to
normal distribution. It uses the functions used by the shortest_path for the routing,
and the functions used by the first_fit for the wavelength allocation.

Input parameters
The input parameters are :

a description of the current topology containing :

o a list of links

. a list of nodes (cross connect)
. the mean value of the request arrivals
. the maximum number of connection requests generated

National Institute of Standards and Technology 123

First Fit Reconfiguration

Output parameters

. a list of the new computed routes.
. a list of all routes in the current topology. It includes the just computed routes.

Pseudo code

begin
while (number_of _generated_connection < limit_number_of generated-connec-
tion)

set_of _connection = generate a set of connection according to a normal distri-
bution

number_of_generated_connection += size (set_of _connection)
shortest_path (set_of _connection)
first_fit (set_of connection)

end while

end

Structures and temporary formats

There are no structures specific to this algorithm.

Integration in MERLIN

Path: $MERLINPATH/algorithm/reconfiguration/first_fit_reconf
Category: reconfiguration
Restrictions: no restriction

124 National Institute of Standards and Technology

	ChapterTitle - CHAPTER 1 What Is MERLiN?
	Heading1 - Management And Control Of WDM Networks
	Heading1 - Overview
	TableTitle - FIGURE 1. MERLiN Global Architecture
	TableTitle - FIGURE 2. MERLiN GUI
	Heading2 - Core
	Heading2 - Plug-ins
	TableTitle - FIGURE 3. Data Exchange in MERLiN
	TableTitle - FIGURE 4. Example of results in the Graphical User Interface

	Heading2 - Algorithms

	Heading1 - Future Extensions

	ChapterTitle - CHAPTER 2 Getting Started
	Heading1 - MERLiN Installation
	Heading1 - Directory Structure
	Heading1 - Running A Simulation
	Heading2 - Launching the daemon
	Heading2 - Using MERLiN plug-ins.
	TableTitle - FIGURE 5. Plug-in parameters

	Heading2 - Plug-in Examples

	Heading1 - Analyzing The Results

	ChapterTitle - CHAPTER 3 Configuration File
	Heading1 - File Structure
	Heading2 - Topology
	Heading2 - Action

	Heading1 - Describing The Components
	Heading2 - Node
	Heading2 - Link
	Heading2 - Connection
	Heading2 - Route
	Heading2 - Wave

	Heading1 - The Actions
	Heading1 - Example File

	ChapterTitle - CHAPTER 4 Graphical User Interface
	Heading1 - Getting started
	Heading2 - Installation requirements
	Heading2 - How to launch the Graphical User Interface?
	TableTitle - FIGURE 6. Graphical User Interface overview

	Heading2 - Shortcut Tool Bar
	TableTitle - FIGURE 7. Shortcut Tool Bar

	Heading2 - Thumbnails Overview
	FigureTitle - FIGURE 8. Thumbnails overview

	Heading2 - Getting/Setting information
	TableTitle - FIGURE 9. Information selection on components
	TableTitle - FIGURE 10. Node Properties
	TableTitle - FIGURE 11. Properties Window for a Node

	Heading2 - Status Bar
	TableTitle - FIGURE 12. Status Bar Overview

	Heading1 - Creating a configuration
	Heading2 - Creating nodes
	TableTitle - FIGURE 13. Node Name Prompt

	Heading2 - Creating Links
	Heading2 - Creating Connection Requests
	Heading2 - Deleting Nodes
	TableTitle - FIGURE 14. Delete Nodes

	Heading2 - Deleting Links
	Heading2 - Deleting Connection Requests
	Heading2 - Simulate the configuration in MERLiN

	Heading1 - Opening an existing configuration
	TableTitle - FIGURE 15. Open File Dialog Box

	Heading1 - Topology information panel
	Heading2 - Non Convert Node Thumbnail Panel
	TableTitle - FIGURE 16. Cross-Connect Non Convert Thumbnail Panel

	Heading2 - Convert Node Thumbnail Panel
	Heading2 - Link Thumbnail Panel
	TableTitle - FIGURE 17. Link Thumbnail Panel

	Heading2 - Connection Thumbnail Panel
	TableTitle - FIGURE 18. Connection Thumbnail Panel

	Heading2 - Routes Thumbnail Panel
	TableTitle - FIGURE 19. Routes Thumbnail Panel

	Heading2 - Algorithms Thumbnail Panel
	TableTitle - FIGURE 20. Algorithm Thumbnail Panel

	Heading1 - Customizing The Document Display
	Heading2 - Scroll Bars
	Heading2 - Zoom
	Heading2 - Split Panels
	Heading2 - List Management

	Heading1 - Saving A Configuration File
	Heading2 - Saving a topology
	TableTitle - FIGURE 21. Save File Dialog Box

	Heading2 - Export Performances

	Heading1 - Troubleshooting
	Heading2 - The interface hang when loading a configuration
	Heading2 - No algorithms are displayed or can be selected

	TitleBook - Part 2: Programmer’s Guide
	ChapterTitle - CHAPTER 5 Architecture Overview
	Heading1 - Core
	Heading1 - Plug-in
	Heading1 - Algorithm
	Heading1 - Communication API
	TableTitle - FIGURE 22.

	ChapterTitle - CHAPTER 6 Component Hierarchy
	Heading1 - Introduction
	Heading1 - Hierarchy
	Heading2 - Component
	TableTitle - FIGURE 23. hierarchy

	Heading2 - Math
	Heading2 - Merlin
	Heading2 - Network
	Heading2 - Parser
	Heading2 - Tool

	ChapterTitle - CHAPTER 7 The MERLiN Grammar
	Heading1 - What Is A Grammar?
	Heading1 - Description of the MERLiN Grammar
	Heading2 - Token list
	TableTitle - FIGURE 24. Tokens’ substitutes

	Heading2 - Rules list

	ChapterTitle - CHAPTER 8 Extending MERLiN
	Heading1 - The Plug-in
	Heading1 - The Algorithm
	Heading1 - Integration To MERLiN

	TitleBook - Appendices
	ChapterTitle - CHAPTER 9 k shortest path
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Numbered - 1. Define a set of possible routes P and a set of solutions S.
	Numbered - 2. Look for all available links from each element of P and construct a temporary set o...
	Numbered - 3. Select a minimum cost path from the temporary set T selected_path = get_path_of_min...
	Numbered - 4. If selected_path is a solution (i.e. the last node of selected_path is destination_...
	Numbered - 5. Go to 2 until S has K elements.

	Heading1 - Structures and temporary formats
	Heading1 - Integration in MERLiN
	Heading1 - References

	ChapterTitle - CHAPTER 10 Tabu
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Numbered - 6. Make a random coloring on this graph.
	Numbered - 7. Compute the conflicts existing and fill the conflict list whith doubles (vertex, nu...

	Heading1 - Structures and temporary formats
	Numbered1 - 1. The vertex
	Numbered - 2. The tabusol
	Numbered - 3. The sol
	Numbered1 - 1. the conflicts list stores all vertices having the same color as their neighbor’s c...
	Numbered - 2. the tabu list stores every tabu "move", i.e. every best choice choosen after a give...
	Numbered - 3. the solution table this is a temporary table where the best solution is picked and ...

	Heading1 - Integration in MERLiN
	Heading1 - References

	ChapterTitle - CHAPTER 11 First Fit Reconfiguration
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Heading1 - Structures and temporary formats
	Heading1 - Integration in MERLiN

